Russian l can you solve this?? l Nice Olympiad Exponential Problem l Calculator not Allowed

Поделиться
HTML-код
  • Опубликовано: 2 янв 2025

Комментарии •

  • @princejag
    @princejag 4 дня назад +4

    Re-post this problem after rectifying the mistakes raised by ALL.

    • @haiderlughmani
      @haiderlughmani  4 дня назад

      At last it will be 16 not 11. its Miner Mistake.

    • @princejag
      @princejag 4 дня назад

      @@haiderlughmani
      BUT THIS GUY SAYS THAT YOU MESSED UP AT DIFFERENT LEVELS.
      The mistake comes from earlier mistake. At 12:48 it is written 9x⁵=-5x+2. But upon recalling that x=[cbrt(10)-1]/3 it was the written 9x⁵=-5[{cbrt(10)-2}/3]⁵+2 in 13:21. Supposedly
      9x⁵=-5[{cbrt(10)-1}/3]+2
      Mistake also occurs at 13:57 when opening bracket. It must be
      9x⁵=[6-5-5cbrt(10)]/3

    • @princejag
      @princejag 3 дня назад

      @@haiderlughmani man don't forget. I am a sincere follower.

  • @mashabali786
    @mashabali786 4 дня назад

    ❤❤❤

  • @roger-5879
    @roger-5879 5 дней назад +1

    au final c'est [ 16 - 5 * (10)^(1/3) ] /27 ===> 16 au lieu de 11
    Excellente démonstration

  • @nasrullahhusnan2289
    @nasrullahhusnan2289 4 дня назад

    Let a=[(10^⅓)-1]⁵
    Expanding
    a=(10^⅓)⁵-5(10^⅓)⁴+10(10^⅓)³
    -10(10^⅓)² +5(10^⅓)+1
    =10(10^⅓)²-50(10^⅓)+100
    -10(10^⅓)²-5(10^⅓)+1
    =101-55(10^⅓)
    =56+55[1-(10^⅓)]
    =56-55a
    56a=56 ---> a=1
    Thus [⅓{(10^⅓)-1]⁵=(⅓)⁵

  • @jaye-c6i
    @jaye-c6i 5 дней назад +2

    there is a mistake in the final result

  • @bodemaxwell
    @bodemaxwell 4 дня назад +1

    6+10=16, not 11.

    • @nasrullahhusnan2289
      @nasrullahhusnan2289 4 дня назад +1

      The mistake comes from earlier mistake. At 12:48 it is written 9x⁵=-5x+2. But upon recalling that x=[cbrt(10)-1]/3 it was the written 9x⁵=-5[{cbrt(10)-2}/3]⁵+2 in 13:21. Supposedly
      9x⁵=-5[{cbrt(10)-1}/3]+2
      Mistake also occurs at 13:57 when opening bracket. It must be
      9x⁵=[6-5-5cbrt(10)]/3

  • @maismatematicaalexandreaug6403
    @maismatematicaalexandreaug6403 4 дня назад

    Excelente resolução mas no final quando vai substituir o valor de X você esqueceu do -1 e continuou a resolução.