Math Olympiad | Can you find the length AB? | (Justify your answer) |

Поделиться
HTML-код
  • Опубликовано: 17 ноя 2024

Комментарии • 46

  • @Vakyanshpro
    @Vakyanshpro 5 месяцев назад +4

    You explains very nicely

    • @PreMath
      @PreMath  5 месяцев назад +1

      Thanks a lot 😊🌹

  • @harrymatabal8448
    @harrymatabal8448 4 месяца назад

    Excellent. Your videos make you think ❤

  • @josefpichler7271
    @josefpichler7271 2 месяца назад

    Nice, with your help I get back a lot of knowledge learned long times ago ...

  • @alster724
    @alster724 5 месяцев назад

    Impressive!

  • @jamestalbott4499
    @jamestalbott4499 5 месяцев назад

    Thank you!

  • @Shell1950
    @Shell1950 5 месяцев назад +2

    I solved it days before my 75th birthday. Never stop learning.

  • @misterenter-iz7rz
    @misterenter-iz7rz 5 месяцев назад +4

    Directly applying intersecting chords' theorem, a(7+b)=6×10=60, (a+7)b=5×12=60, so a=b, a^2+7a-60=0, then a=-12, rejected or 5, therefore AB=17.😊

    • @Micboss1000
      @Micboss1000 5 месяцев назад +4

      I hadn't done the calculations yet, but this is the method that came to mind for me too.

    • @ccmplayer87
      @ccmplayer87 5 месяцев назад

      Yes I agree with you
      AB = AP + PQ + QB
      AB = AP + 7 + QB
      AB = AP + QB + 7
      AQ = AP + PQ
      AQ = AP + 7
      PB = PQ + QB
      PB = 7 + QB
      PB = QB + 7
      AP • PB = CP • PD
      AP(QB + 7) = 6 • 10
      AP(QB + 7) = 60
      AP•QB + 7AP = 60
      AP•QB = 60 - 7AP
      AQ • QB = 5 • 12
      (AP + 7)QB = 60
      AP•QB + 7QB = 60
      60-7AP + 7QB = 60
      -7AP + 7QB = 60 - 60
      7QB = 7AP + 0
      QB = AP
      AP•AP = 60 - 7AP
      AP² = 60 - 7AP
      AP² + 7AP - 60 = 0
      (AP + 12)(AP - 5) = 0
      AP = -12 (no, because length cannot be negative)
      AP = 5 (accepted)
      AB = AP + PQ + QB
      AB = AP + 7 + AP
      AB = 5 + 7 + 5
      AB = 17

    • @PreMath
      @PreMath  5 месяцев назад +1

      Excellent!
      Thanks for sharing ❤️

    • @MrPaulc222
      @MrPaulc222 5 месяцев назад +1

      Pretty much what I did

  • @yalchingedikgedik8007
    @yalchingedikgedik8007 5 месяцев назад

    Thanks Sir
    Very well and enjoyable
    With my respects
    ❤❤❤

  • @Mediterranean81
    @Mediterranean81 5 месяцев назад +1

    AP=a ; EQ=b
    intersecting chords theorem
    b(a+7)=5(12)
    a+7=60/b
    a=-7+ 60/b (#)
    a=(-7b+60)/b
    intersecting chords theorem again
    6*10=a(b+7)
    60=(60-7b)(b+7)/b
    60b=60b+420-7b^2-49b
    0=-7b^2-49b+420
    0=b^2+7b-60
    you can use quadratic formula but i'm factoring
    0=b^2+12b-5b-60
    0=b(b+12)-5(b+12)
    0=(b-5)(b+12)
    b-5=0 or b+12=0
    b=5 or b=-12
    b>0
    so b=5
    from equation (#)
    a=-7+(60/b)
    a=-7+(60÷5)
    a=-7+12
    a=5
    a=5 ; b=5
    so
    AE=a+b+7=5+5+7=17

    • @PreMath
      @PreMath  5 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @sorourhashemi3249
    @sorourhashemi3249 25 дней назад

    Thanks. AP=a and QB=b, (7+a)b=60== >b=60/7+a, and (7+b)a=60, ===>a=60/7b, so (7+60/7+b)b=60===>7b^2+49b-420==> b=5 and a=5 as well and AB=17.

  • @quigonkenny
    @quigonkenny 5 месяцев назад +1

    Bu intersecting chords theorem, for any two intersecting chords in a circle, the products of the lengths either side of the point of intersection is the same. In this case, CP•PD = AP•PB and EQ•QF = AQ•QB. Let AP = x and QB = y.
    CP•PD = AP•PB
    6(10) = x(7+y)
    60 = 7x + xy
    xy = 60 - 7x
    y = (60-7x)/x
    EQ•QF = AQ•QB
    5(12) = (x+7)y
    60 = (x+7)y
    60 = (x+7)(60-7x)/x
    60x = 60x + 420 - 7x² - 49x
    7x² + 49x - 420 = 0
    x² + 7x - 60 = 0
    (x+12)(x-5) = 0
    x = 12 ❌ | x = 5
    y = (60-7(5))/(5)
    y = 25/5 = 5
    AB = x + 7 + y = 5 + 7 + 5 = 17

    • @PreMath
      @PreMath  5 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @santiagoarosam430
    @santiagoarosam430 5 месяцев назад +1

    Potencia de Q =5*12=60=(7+a)b
    Potencia de P =6*10=60=(7+b)a
    7b+ab=7a+ab ; a=b ; 60=7a+a^2 ; a=5.
    AB=7+2a=17.
    Gracias y saludos.

    • @PreMath
      @PreMath  5 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @zdrastvutye
    @zdrastvutye 5 месяцев назад

    this revealed to need 2 nested calculations, but in the end i have the same result, despite i did not apply any theorem, only by calculating distances:
    10 print "premath-can you find the length ab":dim x(9),y(9):@zoom%=1.4*@zoom%
    20 l1=6:l2=10:l3=7:l4=5:l5=12:sl=l1+l2+l3+l4+l5:sw=l1^2/sl:r=sw:goto 170
    30 xm=-sqr(abs(r*r-(ye-ym)^2)):goto 140
    40 yp=-sqr(l3^2-xp^2):goto 80
    50 dyc=2*yc*(ym-yp):zx=r*r-l1^2-xm^2-ym^2+xp^2+yp^2+dyc:if xp=xm then stop
    60 xc=zx/2/(xp-xm):dgu1=(xc-xp)^2/sl^2:dgu2=(yc-yp)^2/sl^2
    70 dgu3=l1^2/sl^2:dg=dgu1+dgu2-dgu3:return
    80 yc=-sl:gosub 50
    90 dg1=dg:yc1=yc:yc=yc+sw:yc2=yc:if yc>sl then return
    100 gosub 50:if dg1*dg>0 then 90
    110 yc=(yc1+yc2)/2:gosub 50:if dg1*dg>0 then yc1=yc else yc2=yc
    120 if abs(dg)>1E-10 then 110 else return
    130 goto
    140 gosub 40:dxd=(xp-xc)*(l1+l2)/l1:xd=dxd+xc:dyd=(yp-yc)*(l1+l2)/l1
    150 yd=dyd+yc:dfu1=(xd-xm)^2/sl^2:dfu2=(yd-ym)^2/sl^2:dfu3=r*r/sl^2
    160 df=dfu1+dfu2-dfu3:return
    170 ym=(l4-l5)/2:ye=l4:xp=-l3: gosub 30
    180 df1=df:xp1=xp:xp=xp+sw:if xp>l3 then else 200
    190 r=r+sw:goto 170
    200 xp2=xp:gosub 30:if df1*df>0 then 180
    210 xp=(xp1+xp2)/2:gosub 30:if df1*df>0 then xp1=xp else xp2=xp
    220 if abs(df)>1E-10 then 210:rem die schnittpunkte berechnen
    230 xq=0:yq=0:dx=xp-xq:dy=yp-yq:x1=xq:y1=yq:dl=l3
    240 kxx1=(dx/dl)^2:kxx2=(dy/dl)^2:kxx=kxx1+kxx2:kx1=(x1-xm)*dx/dl:kx2=(y1-ym)*dy/dl
    250 kn=(x1-xm)^2+(y1-ym)^2-r*r:kx=kx1+kx2:kx=kx/kxx:kn=kn/kxx
    260 dis=kx^2-kn:if dis

  • @Tmwyl
    @Tmwyl 3 месяца назад

    I got this one!

  • @wackojacko3962
    @wackojacko3962 5 месяцев назад +1

    @ 1:47 there is a phenomenon of the cathode ray tube of old televisions is known as "blacker than black" . I never thought of what appears to be the illusion of "whiter than white" of the color change. And of course a shout out to using the Intersecting Chord Theorem. 🙂

    • @PreMath
      @PreMath  5 месяцев назад +1

      😀
      Thanks for the feedback ❤️

  • @batavuskoga
    @batavuskoga 5 месяцев назад +1

    Using the chords theorem, it's easy to find the solution

    • @PreMath
      @PreMath  5 месяцев назад

      Thanks for the feedback ❤️

  • @marcgriselhubert3915
    @marcgriselhubert3915 5 месяцев назад +1

    I dd it just like you. Another possible method??
    (I am always surprised by the way you solve second degree equations)

    • @PreMath
      @PreMath  5 месяцев назад

      Excellent!
      Thanks for the feedback ❤️

  • @AmirgabYT2185
    @AmirgabYT2185 5 месяцев назад +4

    AB=17

    • @PreMath
      @PreMath  5 месяцев назад +1

      Excellent!
      Thanks for sharing ❤️

  • @prossvay8744
    @prossvay8744 5 месяцев назад +1

    Let AP=x ; BQ=y
    x(y+7)=(6)(10)
    xy+7x=60 (1)
    y(x+7)=(5)(12)
    xy+7y=60 (2)
    (1) and (2)
    xy+7x=xy+7y
    7x=7y
    So x=y
    (1): x^2+7x-60=0
    so x=5 ;y=5
    so AB=5+7+5=17units.❤❤❤.Best regards.

    • @PreMath
      @PreMath  5 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq 5 месяцев назад

    Intercepting chords theorem and arithmetic
    ------_---------
    Sum of the segments of AB is fixed as AB is fixed.
    The larger segment is greater than 7 according to the figure.
    The product of segments is 60.
    ++
    Hence we have to break 60 into two parts so that the product is 60.And the difference between larger and smaller will be7
    Hence
    60=10*6(case 1)
    =12*5 ( case2)
    = 15*4 (.case 3)
    Case 1
    If larger segment is 10 ,then the smaller segment will be (10-7)=3
    10*3 is not equal to 60
    Hence this break up may not be accepted.
    Case 3
    if the larger segment is 15, then the smaller section will 15-7=8
    Product of 15*8 exceeds 60
    Hence this break up may not be accepted.
    Case 2
    If the larger segment is 12 and the smaller will be 12-7=5.
    The product of 12 and 5 is 60
    This break up must be accepted .
    Comment please.
    Length of AB = 12+5=17

  • @phungpham1725
    @phungpham1725 5 месяцев назад +1

    La bel the two unknown red line segment as x and y.
    By using chord theorem, we can find x= y
    So, x(7+x) =60--> sqx +7x-60=0
    --> x= (-7+17)/2 =5 ( negative result rejected)
    AB= 17😅

    • @PreMath
      @PreMath  5 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @kalavenkataraman4445
    @kalavenkataraman4445 5 месяцев назад +2

    AB = 17 units

    • @PreMath
      @PreMath  5 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @himadrikhanra7463
    @himadrikhanra7463 5 месяцев назад

    Ab= x
    60= x × ( x - 7)
    60 = x ×( x - 7)
    AB =12 ?

  • @gelbkehlchen
    @gelbkehlchen 16 дней назад

    Solution:
    According to the tendon theorem:
    (1) AP*(7+QB) = 6*10 ⟹
    (2) (AP+7)*QB = 5*12 ⟹
    (1a) 7*AP+AP*QB = 60 ⟹
    (2a) AP*QB+7*QB = 60 ⟹
    (1a)-(2a) = (3) 7*AP-7*QB = 0 ⟹ (3a) AP = QB in (1a) ⟹
    (1b) AP²+7*AP = 60 |-60 ⟹
    (1c) AP²+7*AP-60 = 0 |p-q formula ⟹
    (1d) AP1/2 = -3.5±√(3.5²+60) = -3.5±8.5 ⟹
    (1e) AP1 = -3.5+8.5 = 5 and (1f) AP2 = -3.5-8.5 = -12 [invalid in geometry] ⟹
    AB = 2*AP+7 = 2*5+7 = 17

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 5 месяцев назад +1

    Assuming that Length of Line AB = (X + 7 + Y) Linear Units.
    Making use of the Intersecting Chords Theorem:
    "The Intersecting Chords Theorem states that when two chords of a circle intersect within the circle, the product of the segments of one chord is equal to the product of the segments of the other chord."
    1) Given the System of Two Nonlinear (Curvilinear) Equations with Two Unknows (X ; Y):
    2a) (6 * 10) = X * (7 + Y) : 60 = X * (7 + Y)
    2b) (5 * 12) = Y * (7 + X) ; 60 = Y * (7 + X)
    3) Solutions (Intercepting Point): X = 5 and Y = 5
    4) (X + 7 + Y) = 5 + 7 + 5 = 17 lin un
    5) ANSWER : Length of Line AB is equal to 17 Linear Units.

    • @PreMath
      @PreMath  5 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @unknownidentity2846
    @unknownidentity2846 5 месяцев назад +2

    Let's find the length of AB:
    .
    ..
    ...
    ....
    .....
    It seems that we have to apply the intersecting chords theorem:
    CP*DP = AP*BP
    EQ*FQ = AQ*BQ
    6*10 = AP*BP
    5*12 = AQ*BQ
    60 = AP*BP
    60 = AQ*BQ
    ⇒ AP*BP = AQ*BQ
    AP*BP = AQ*BQ
    AP*(BQ + PQ) = (AP + PQ)*BQ
    AP*BQ + AP*PQ = AP*BQ + PQ*BQ
    AP*PQ = PQ*BQ
    ⇒ AP = BQ
    60 = AP*BP = AP*(BQ + PQ) = AP*(AP + PQ) = AP*(AP + 7) = AP² + 7*AP
    AP² + 7*AP − 60 = 0
    AP
    = −7/2 ± √[(7/2)² + 60]
    = −7/2 ± √(49/4 + 60)
    = −7/2 ± √(49/4 + 240/4)
    = −7/2 ± √(289/4)
    = −7/2 ± 17/2
    Since AP>0, the only useful solution is:
    AP = −7/2 + 17/2 = 10/2 = 5
    AB = AP + PQ + BQ = 2*AP + PQ = 2*5 + 7 = 17
    Best regards from Germany

    • @PreMath
      @PreMath  5 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @Mediterranean81
    @Mediterranean81 5 месяцев назад +1

    AP=a ; EQ=b
    intersecting chords theorem
    b(a+7)=5(12)
    a+7=60/b
    a=-7+ 60/b (#)
    a=(-7b+60)/b
    intersecting chords theorem again
    6*10=a(b+7)
    60=(60-7b)(b+7)/b
    60b=60b+420-7b^2-49b
    0=-7b^2-49b+420
    0=b^2+7b-60
    you can use quadratic formula but i'm factoring
    0=b^2+12b-5b-60
    0=b(b+12)-5(b+12)
    0=(b-5)(b+12)
    b-5=0 or b+12=0
    b=5 or b=-12
    b>0
    so b=5
    from equation (#)
    a=-7+(60/b)
    a=-7+(60÷5)
    a=-7+12
    a=5
    a=5 ; b=5
    so
    AE=a+b+7=5+5+7=17

    • @PreMath
      @PreMath  5 месяцев назад

      Excellent!
      Thanks for sharing ❤️