Os INFINITOS e a HIPÓTESE DO CONTÍNUO

Поделиться
HTML-код
  • Опубликовано: 5 янв 2025

Комментарии • 256

  • @faustinoesmaelesmael
    @faustinoesmaelesmael Год назад +158

    Pena que a duração do vídeo é finita.

    • @matsui9164
      @matsui9164 Год назад +8

      já a timeline é infinita

    • @d4niel_oliveira
      @d4niel_oliveira Год назад +5

      É uma pena

    • @ogutem
      @ogutem Год назад +7

      Se tivesse duração infinita, esse vídeo nunca teria começado

    • @galo6468
      @galo6468 Год назад +6

      Limitada, mas vc pode assistir ele continuamente de forma infinita, e a barra tem pontos infinitos tbm

    • @fernandogomide3262
      @fernandogomide3262 Год назад +3

      Será?

  • @danilojose7370
    @danilojose7370 Год назад +20

    Minha mente não entende como esse canal ainda não tem infinitos inscritos

  • @felipezandonadi20
    @felipezandonadi20 Год назад +22

    Logo logo chega nos 100k. Daniel traz algum vídeo falando mais sobre matemáticas que hoje em dia são aplicadas na computação como os algoritmos de ordenação.

  • @yuriventura8587
    @yuriventura8587 Год назад +24

    Muito obrigado por esse vídeo maravilhoso. Vc foi da Grécia antiga ao século XX, o que acrescenta muito as informações passadas. Alem disso me fez entender o argumento da diagonalização de Cantor. Teu trabalho vale ouro cara.

    •  Год назад +2

      Muito obrigado!

    • @hudsonmoraes1261
      @hudsonmoraes1261 Год назад +1

      Esse argumento da diagonalização de Cantor é muito esquisito. Porque dá a impressão de que pode ser usado para provar qualquer coisa!

    • @hudsonmoraes1261
      @hudsonmoraes1261 Год назад +1

      Parece um liberou geral.

    • @WaldeckVieira
      @WaldeckVieira Год назад +1

      Vc entendeu mesmo, ou pensa que entendeu ou quer somente agradar o autor do vídeo???????, Então explica aí pra gente, porque a partir dessa parte do vídeo, eu não entendi mais nada!!!! E olha que eu lido com matemática, mas acho que faltou didática ai ...... kkkkkkkkkk

    • @yuriventura8587
      @yuriventura8587 Год назад

      @@WaldeckVieira Cara eu entendi o que ele falou, mas como vc deve saber por sua experiência cm matemática, existe uma diferença gritante entre entender um pouco melhor um conceito, que foi o meu caso, e dominar o assunto.
      Vamos então à explicação do que ele fez logo após os 6:50 do vídeo:
      A prova é feita por redução ao absurdo, logo ele assume que os conjuntos são iguais e mostra que isso leva a uma contradição. A contradição que ele encontra é que sempre é possível encontrar um número que impede que exista uma bijeção entre ambos os conjuntos. Para fazer isso basta encontrar um único número entre 0 e 1 que não possua imagem na função bijetiva, que é exatamente o que o método da diagonalização faz.
      Eu fiz um texto de uma página explicando melhor o que eu quis dizer. Vou deixar em um comentário separado pq não sei se o youtube vai deletar comentários cm links externos.

  • @Robertoilo
    @Robertoilo Год назад +3

    Estou acompanhando e torcendo pelo seu crescimento. Em 29 de março, portanto há exatamente 1 semana, teu canal contava com 55,6 mil inscritos. Hoje conta com 66,1 mil. São cerca de 10.500 inscritos a mais, ou aproximadamente 20%, em apenas uma semana. E com certeza esse crescimento todo é mais do que merecido e isso é só o começo. Prevejo que terei que usar funções exponenciais para calcular o crescimento desse canal daqui pra frente. Parabéns!

  • @pombo404
    @pombo404 Год назад +6

    👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏💖💖💖💖👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏 Parabéns professor Daniel! Da até raiva tenho um caminhão de coisas a fazer, mas seus vídeos são bons e irresistíveis, simplesmente não da para deixar de assistir! Em termos de alcance chegam bem mais longe e impactam bem mais!

  • @luciotekdream009
    @luciotekdream009 Год назад +58

    Infinitamente grato por este vídeo!

  • @nathangiovanni_Vegano
    @nathangiovanni_Vegano Год назад +2

    Por favor, continue mais essa conversa.
    Fale mais sobre teoria dos conjuntos ou categoria.

  • @roneisandrovieira1142
    @roneisandrovieira1142 Год назад +2

    Professor Daniel, mais uma vez parabéns pelo vídeo. A sua linha de produção reunindo o conteúdo da matemática aos aspectos da história e da filosofia matemática é um excelente viés para o ensino: além de ser suficientemente atraente, não deixa de lado os aspectos mais importantes das ideias. Esse vídeo aqui já é o terceiro que uso nas minhas aulas de introdução à análise matemática para a licenciatura. Um grande abraço e que Deus o abençoe nesse maravilhoso trabalho.

  • @luishenriquecoelhoramos6370
    @luishenriquecoelhoramos6370 Год назад +5

    Infinito não é o lugar que vai acontecer o encontro nacional das retas paralelas?
    Teu canal és incrível!
    Continua forever!!!

  • @alexandref6625
    @alexandref6625 Год назад +3

    Poderia fazer uma análise da carta sobre o infinito de Espinoza. A matemática presente nele e sua relação com a matemática posta na época. Espinoza falava sobre o infinito de maneira filosófica e apoiado em problemas matemáticos. Com seus vídeos dá pra ter uma ideia sobre a linha do tempo do desenvolvimento da ideia de infinito, e como Espinoza produziu no século xvii, ele traz noções antigas de infinito.

  • @dombox7644
    @dombox7644 Год назад +3

    Gostei muito das fotos juntos com os nomes que cita.
    Dá os créditos e ilustra a história. Sei que é trabalhoso, mas fica um show como já é normal nos seus vídeos.
    Um verdadeiro top show divididos em top shows😊

  • @matematicauniversitariaRenan
    @matematicauniversitariaRenan Год назад +1

    Mais um excelente vídeo! Roteiro muito bem montado e muito boa edição de vídeo!!
    Ps: Chegando já a 70.000 inscritos! Parabenzaço! Primeira vez que vejo um canal explodir! :)

    •  Год назад

      Valeu!!!

  • @Leo-if5tn
    @Leo-if5tn Год назад +2

    Cara, seus vídeos são perfeitos, sempre espalho seu canal pela internet e para meus amigos!

    •  Год назад +1

      Muito obrigado 😃

  • @VictorGabriel-mn1wc
    @VictorGabriel-mn1wc Год назад

    Conheci este canal recentemente e estou impressionado com o conteúdo, muita iformação e qualidade, aprendo mais aqui q no colégio, coisas como probabilidade e geometria aprendo aqui, obrigado pelo seu trabalho

  • @joaocarlosferraz8836
    @joaocarlosferraz8836 Год назад

    Daniel meu filho, uma coisa é certa, sua sabedoria é infinita. Que o nosso Deus protetor te abençoe !

  • @BrunoAlmeidaSilveira
    @BrunoAlmeidaSilveira Год назад

    Eu estou aficionado pelo seu trabalho! Sua didática é incrível e vídeos como esse são extremamente raros na internet. Se 3B1B tem seus milhões de escritos, eu sei que você alcançará seu 1M em breve. Por favor, não pare de produzir conteúdo!

  • @l.f.quisper5970
    @l.f.quisper5970 Год назад

    Estou lendo o livro de Análise do Claus Ivo Doering e seu vídeo me ajudou muito! Ademais, parabéns pelo carisma e pela didática, estou adorando o canal!

  • @ricardorvb
    @ricardorvb Год назад +2

    Parabéns pela Aula!
    Cada vídeo poderia ser transcrito , colado em uma planilha com links pra figuras e fontes. E também exercícios.

  • @tiagolcoelhoc
    @tiagolcoelhoc Год назад +2

    Excelente conteúdo, Daniel! Parabéns! Acabei de conhecer o canal e já pretendo maratonar. Queria fazer uma sugestão: caso ainda não tenha, você poderia fazer um vídeo com mais detalhes sobre o axioma da escolha. Um abraço!

    •  Год назад +2

      Está nos planos!

  • @princesanuala
    @princesanuala Год назад +4

    Eu tenho uma dificuldade muito grande com a ideia de que os conjuntos dos números naturais e dos números pares são do mesmo tamanho porque associando de outra maneira (por exemplo, associando os números pares do conjunto N ao conjunto PARES e ignorando os números ímpares, deixaremos de ter uma bijeção porque sobrarão todos os números ímpares do conjunto N (como no paradoxo de Ross-Littlewood, que você explicou no vídeo "3 paradoxos do infinito")).

    • @fucandonamatematica6207
      @fucandonamatematica6207 Год назад

      Oi, pois é Camila, entender a gente entende mas convencer-se são outros quinhentos, né? Uma coisa que me convenceu sobre isso e, quem sabe, a você também é o seguinte: eu pego o 1 e associo com o 4, o dois com o 8, o 3 com o 12, o n com 4n, assim eu vou esgotar os naturais e vão sobrar no conjunto dos pares o 2, o 6, o 10, o 14, enfim todos os números do tipo 4n+2 e nos dará a impressão que há mais pares que naturais!!!!!!!!!!!!! A definição diz: basta uma bijeção mas não são todas as funções que serão uma bijeção. Espero ter ajudado. Abraço.

    • @rodrigodias7147
      @rodrigodias7147 Год назад

      Por definição, dois conjuntos têm o mesmo tamanho se _existe alguma_ bijeção entre eles. Isso não impede que haja outras funções entre os dois conjuntos que não sejam bijetoras 🙃

  • @otimashistorias7076
    @otimashistorias7076 Год назад

    Show! Depois se puder faz um vídeo falando sobre os "limites" da Matemática, digo, o que existe de mais avançado no momento atual. E pra onde ela "irá" nas próximas décadas

  • @paulocprandel
    @paulocprandel Год назад

    Parabéns pelo conteúdo! Faz um vídeo sobre o axioma da escolha!

  • @raphaelkuratomi8450
    @raphaelkuratomi8450 Год назад

    Parabéns pelo video e pelos conteúdos no geral! Um dos melhores canais de ciencia do BR!

  • @nettsy
    @nettsy Год назад +1

    Que bom que a frequência desse canal é infinita.

  • @Snow-so7ci
    @Snow-so7ci Год назад

    Esse canal é bom demais, não é possível. Merece um cardinal inacessível de likes. Aliás, qual a sua área de pesquisa no doutorado? Não sei se já comentou sobre.

  • @wilsonrfernandes
    @wilsonrfernandes Год назад

    Muito bons os vídeos. Só precisa deixar os áudios com o volume mais alto, pois se tem ruídos no ambiente fica difícil de ouvir

  • @isaacAtaliba
    @isaacAtaliba Год назад

    Irmão, passando aqui pra dizer que teu canal é foda. Sucesso infinito pra vc

  • @carlosaugusto4477
    @carlosaugusto4477 10 месяцев назад

    Que dizer além de "Parabéns! Excelente aula!!!"?

  • @luislobo9b
    @luislobo9b Год назад

    Faz alguns vídeos sobre a matemática da blockchain e coisas do tipo como crypto, ou nft. Se te interessar.... acho o assunto interessante também.

  • @MatematiCast
    @MatematiCast Год назад +2

    Primeiro comentário!? Parabéns pelo trabalho professor. Tudo excelente.

  • @pauloreis4053
    @pauloreis4053 Год назад +1

    A sua criatividade de criar thumbnail é infinita!! ❤

  • @Carlosedu_noleto
    @Carlosedu_noleto Год назад +1

    daniel, um video sobre numeros de louville seria muito bom

  • @vitorrodrigues2969
    @vitorrodrigues2969 5 месяцев назад

    6:10 até aqui entendi q se tenho uma forma lógica de listar o conjunto X e o Y em uma lista mesmo que seja infinita, então é só iterar pelas listas e eu consigo associar o indice i de cada lista um com o outro, entretanto, essa forma de listar os racionais para mim é meio estranha, eu entende que é uma matriz que 1/x é o padrão da horizontal e X vai indo até o infinito natural, logo, 1/1, 1/2, 1/3, e quando eu chegar no infinito, adiciono uma nova linha de 2/x e repito o padrão, mas isso implica que para listar os racionais, eu preciso ir para o infinito em dois sentidos diferentes...

  • @Megachrisgui
    @Megachrisgui Год назад +1

    Pode falar sempre desse assunto, afinal o conteúdo sobre e minha curiosidade também não limites kk

  • @lcolatto
    @lcolatto Год назад

    Pelo que estudei, o termo, conceito e até o símbolo de infinito só apareceram depois, pois a noção de algo muito grande era um tanto confusa. Veja que não sem símbolo de número maior que mil na Roma antiga, alias eles tentaram um símbolo que era CX+(C invertido) que foi encontrado em algumas ruinas. Isto já parece com o símbolo de infinito, porém este símbolo era pouquíssimo usado, pois não tinha relevância comercial ou mesmo nas guerras.

  • @noemizeraickmonteiro836
    @noemizeraickmonteiro836 10 месяцев назад

    Que vídeo genial. Parabéns!

  • @Eusouborgito
    @Eusouborgito Год назад

    Ja tem um video falando da conjectura de ramanujan ? Seria bem interessante.

  • @anselmorebelo8188
    @anselmorebelo8188 Год назад +3

    Imagina as provas que o Hilbert passava para os seus estudantes. Esse cara sabe fazer uma lista de exercícios interessante!

    • @fernandopavan3387
      @fernandopavan3387 Год назад +1

      Reza a lenda que até hoje eles estão resolvendo rs

  • @victorrocha70
    @victorrocha70 Год назад +3

    Canal incrível!

  • @ronyypy
    @ronyypy Год назад +2

    Chuck Norris não acredita no infinito porque ele contou 2 vezes o mesmo.

  • @anselmorebelo8188
    @anselmorebelo8188 Год назад

    Fico me perguntado se existe uma outra forma de formalizar a Matemática (as Categorias) sem ser pela estrutura axiomática, e que problemas que temos nesse sistema (o axiomático) seriam resolvidos e quais seriam os seus possíveis problemas (pois não existe almoço grátis).

  • @luanramos7116
    @luanramos7116 Год назад

    Professor indica alguns livros de matematica, economia e divulgação em geral no insta

  • @8523roberto
    @8523roberto Год назад

    Quanto tempo leva um momento?
    Quando tiramos uma foto, a câmera captou durante uma fração de segundo. Certo? Então porque não vemos a imagem se movimentar?

  • @leonardosogliabueno
    @leonardosogliabueno Год назад +2

    Tenho uma pergunta sobre infinito que não encontrei respostas.
    Sendo os números pi e de euler irracionais com infinitos dígitos, e possível percorrer os infinitos dígitos do número pi e em algum lugar encontra a sequencia completa dos números de Euler, e o contrário também, é possível percorrer os infinitos digitos do número de Euler e em algum ponto encontrar a sequencia dos dígitos do número pi completa.?

    • @fucandonamatematica6207
      @fucandonamatematica6207 Год назад

      Oi, gostei de sua pergunta, veja no que pensei: Seja pi=3,14271828..., vamos imaginar que a partir da terceira casa começamos a ter o número "e" podia ser qualquer outra casa decimal, então teríamos pi=3,14 + e/1000 quer dizer pi-e/1000=3,14, então pi-e/1000 seria um número racional = 3,14. Agora a encrenca, não se sabe se pi-e ou pi.e são racionais e acho que menos ainda se pi-e/1000 é racional. O que se sabe é que os dois não podem ser racionais, ou um ou outro ou ambos são irracionais. Enfim sua pergunta continua sem resposta, fica dependendo de alguém provar que pi-e/n é ou não racional. Abraço.

  • @alefeans
    @alefeans Год назад +3

    A matemática é linda demais ❤

  • @iurivilletti4722
    @iurivilletti4722 Год назад +1

    Professor, fale da hipótese de Riemman por gentileza

    • @fucandonamatematica6207
      @fucandonamatematica6207 Год назад

      Oi, se quiser um aperitivo sem a didática deste canal mas com um conteúdo razoável veja um vídeo sobre o assunto no meu canal. Obrigado. Abraço.

  • @bexigah
    @bexigah Год назад +2

    Tem um exemplo real de infinito (eu acho).
    Me lembro que um cara olhava uma estrutura no microscópio, era um pedaço de brocoli, eu acho, e esse pedaço de brocolis aumentado era formado por outros pedacinhos iguais a ele, e quanto mais o cara aumentava o zoom, só viamos a mesma forma fractal.
    Fiquei imaginando que talvez os corpos celestes esfericos não sejam mais que pedaços de um grande corpo celeste... e assim por diante

    • @LenilsonCastroFerreira
      @LenilsonCastroFerreira 4 месяца назад +1

      @bexigan, esse fenômeno que vcs se refere é o conjunto de Mandelbrot, ele está relacionado ao conceito de fractais, busque sobre esse assunto e vc verá que esse fenômeno se repete várias coisas da natureza ...

  • @fucandonamatematica6207
    @fucandonamatematica6207 Год назад

    Algumas coisas me deixaram perplexo na Matemática, principalmente as impossibilidades: A resolução da quíntica, o quinto axioma, a duplicação do cubo, a trissecção dos ângulos, a quadratura do círculo, a incompletude da Aritmética etc. junte-se a isso a hierarquia dos infinitos e mais recentemente a indecidibilidade da Hipótese do Continuum. Coisas maravilhosas que me deixaram sem chão. Parabéns pelo vídeo.

    •  Год назад +1

      Tudo isso é realmente incrível!

    • @fucandonamatematica6207
      @fucandonamatematica6207 Год назад

      @ Como diria meu professor Newton da Costa: Estupefaciente, hehe

  • @josecarlosmendesjaccoudfil5907

    Ativei o sininho e não me arrependi! 😎

  • @natanaelmachado7627
    @natanaelmachado7627 Год назад

    7:44 tem um jeito, é só fazer igual o Hotel de Hilbert, pega esse "novo" número que não está na lista, associa ele ao número 1, pega o número real associado ao 1 e muda ele para o 2, pega o número real associado ao 2 e muda ele para o 3, etc. pronto está feito a bijeção kkk

  • @YagoOfficial
    @YagoOfficial Год назад

    Mais um vídeo sensacional, parabéns

  • @valdebertosantana3797
    @valdebertosantana3797 Год назад

    descobri esse canal há algumas semanas e logo dei de cara com o PARADOXO A RODA de ARISTÓTELES isso ferveu minha mente.

    •  Год назад

      🤯

  • @danielsilvestre7881
    @danielsilvestre7881 Год назад +1

    Bom vídeo me fez pensar infinitamente

  • @Robertoilo
    @Robertoilo Год назад

    Quando pensamos no conceito de "ciências exatas", a primeira disciplina que, creio eu, vem à cabeça da maioria das pessoas é a matemática. A matemática é a "ciência exata por excelência".
    E se nos perguntarmos qual seria a área do conhecimento "oposta" ou antagônica às ciências exatas, me parece claro que a maioria de nós concordaria que esse papel pertence às ciências humanas, e detro dela, a filosofia certamente seria a "ciência humana por excelência".
    Logo, a relação entre filosofia e matemática no meio acadêmico, seria como culpado e inocente no meio jurídico; céu e inferno na teologia, macho e fêmea na biologia. Esse canal, no entanto, nos prova a cada vídeo que matemática e filosofia são na verdade, o que eu costumo comparar como as duas pontas de uma ferradura, que de tão opostas acabam quase que se encontrando.

  • @brunosoul1
    @brunosoul1 Год назад

    "professor!... Eu não entendi como que chegou na matriz que gerou a diagonal da explicação da prova do cantor." 7:20 😂

  • @ianmassa8572
    @ianmassa8572 Год назад

    Em teoria das categorias em alguns casos se assume a existência de um cardinal maior do que todos os cardinais obtidos tomando sucessivamente o conjunto das partes dos naturais!

  • @renanything7
    @renanything7 Год назад

    Essencialmente, pode-se assumir ZFC e:
    1. existe um conjunto com cardinalidade entre N e a do contínuo; ou
    2. Não existe um conjunto com essa propriedade.
    Qualquer uma das hipóteses não produzirá contradições com as implicações do ZFC. É isso? Assumindo-se 1 (ou então 2) acontece algo "de interessante"? Isto é, existem implicações "interessantes" que só acontecem se assumir-se 1 (e vice-versa)?
    Meio complicado falar em "interessante", mas acho que deu para entender meu ponto haha.

  • @edwolt
    @edwolt Год назад +1

    O axioma das paralelas passou por uma situação parecida. Se você considerar que ela é verdade, você tem a geometria euclidiana. Se você parte do pressuposto que existem infinitas paralelas, você cai na geometria hiperbólica. Se você considera que não exitem retas paralelas, o resultado é a geometria esférica.
    Até onde eu sei, até hoje não foi encontrado nenhuma contradição em nenhuma das três geometrias. E que a geometria hiperbólica pode ser usada para simplificar contas nas teorias de Einstein.

    • @fucandonamatematica6207
      @fucandonamatematica6207 Год назад

      Oi, Li há muito muito tempo já num livro antigo o seguinte: "A consistência das geometrias ainda não foi provada mas demonstra-se que se uma delas for inconsistente as três serão. Não me lembro bem mas havia uma citação à geometria sobre uma tractriz de revolução.

  • @Luizvc12
    @Luizvc12 Год назад

    Algo contínuo, muito mais do que algo discreto, traz para a mente o conceito de espaço; mas o que é espaço? Nós criamos coisas que ocupam espaço à imagem e semelhança da coisa, real ou virtual, e, a partir dessa coisa, dizemos há um espaço.
    Se a mesma coisa muda de lugar, dizemos que houve um tempo; mas o que é o tempo? Será que tudo se resume numa adorável mundanidade?

  • @andrebarros3003
    @andrebarros3003 Год назад

    Para a cardinalidade dos racionais (a mesma dos naturais) versus a dos reais, existe uma prova bem interessante quando se considera a reta real, suposta infinita e contínua. Primeiro, prova-se que os números racionais são densos, i.e., em qualquer segmento finito, existem infinitos números racionais. Após isto, e utilizando a correspondência entre os números racionais e os números naturais, cobrimos o 1º número da sequência com um segmento de comprimento L, o 2º com um segmento de comprimento L/2, o 3º com um segmento de comprimento L/4, ou seja, com segmentos que obedecem a lei de formação de uma PG com razão 1/2. Somando-se todos estes segmentos, e mesmo ignorando as sobreposições, temos como resultado 2L, o que implica em que os racionais não preenchem toda a reta, ainda que sejam densos, pior L é completamente arbitrário, podendo ser feito tão pequeno quanto se queira. Eu acho este um dos resultados mais extraordinários que pode ser apresentado no ensino médio sobre a beleza surpreendente que existe na matemática.

  • @HooiClark
    @HooiClark 6 месяцев назад

    Esse cara desse vídeo nasceu com a Matemática no sangue.
    .

  • @victorrocha70
    @victorrocha70 Год назад

    Comentando para ajudar a engajar

  • @fleepjaack
    @fleepjaack Год назад +3

    o infinito com crtz e uma das coisas que mais me deu curiosidade na vida

  • @JLenival
    @JLenival Год назад

    O número de casas para representar exatamente uma medida é infinito. Por isso a medida é adequadamente representanda pelo melhor valor e uma incerteza. Sempre que se tentar medir com uma precisão maior, vai acabar chegando no limite do instrumento.
    Uma onda eletromagnética se extende infinitamente. Quando a gente diz que ela não está mais presente num determinado ponto do espaço, significa apenas que o instrumento que estamos usando para medir não tem precisão o suficiente pra representar a intensidade do campo naquele ponto.
    O espectro de frequência de qualquer grandeza física também é infinito. Ao falar que um sinal som ou eletromagnético se extende até determinada frequência, o que está implícito é que a partir daquele valor de frequência a intensidade do sinal em questão é irrelevante para a aplicação. Inclusive, pela própria natureza da transformada de Fourier, mesmo um sinal finito no tempo ou uma imagem de dimensões finitas terá uma representação espectral infinita. Isso implica em, caso você faça a transformada de uma sequência, a sua inversa não será exatamente igual, mas isso não inviabiliza sua aplicação.
    Nesse contexto de medição o infinito vai aparecer frequentemente, mas a engenharia resolve essa limitação impondo um grau de incerteza tolerado.

  • @paulorgoig
    @paulorgoig Год назад

    Entendo a questão da bijeção e cardinalidade, mas continuo achando que não faz sentido dizer que um infinito seja maior que outro, pois como uma coisa que não tem fim pode ser maior ou menor que outra que também não tem fim?

  • @samueldejesus9632
    @samueldejesus9632 Год назад +1

    Seria interessante se você algum dia falasse a respeito dos números duais ou dual numbers,pois eu só encontrei conteúdo de canais gringos

    • @fucandonamatematica6207
      @fucandonamatematica6207 Год назад

      Em Português veja o vídeo: Definição de limites sem épsilon e sem delta-Números evanescentes.

  • @franciscoameno3433
    @franciscoameno3433 Год назад +2

    Mais uma semana aprendendo com o brabo, obrigado pelo ótimo vídeo professor. Não sei se faz sentido a pergunta mas fiquei com uma curiosidade: se existe cardinalidade entre o conjunto dos Complexos com algum outro conjunto?

    •  Год назад +2

      Complexos, Quatérnios e Reais têm todos a mesma cardinalidade 🤯

    • @julioflor5022
      @julioflor5022 Год назад

      A cardinalidade de R é a mesma de R^{n} ?

    • @julioflor5022
      @julioflor5022 Год назад

      Existe alguma estrutura algébrica que tenha a cardinalidade das partes de R?

    • @fucandonamatematica6207
      @fucandonamatematica6207 Год назад

      @@julioflor5022 Sim, mas não se consegue uma bijeção contínua entre IR e IR^n Como se prova????

    • @fucandonamatematica6207
      @fucandonamatematica6207 Год назад

      @@julioflor5022 O conjunto de todas as funções de IR em IR tem cardinalidade maior que IR e de certa forma há uma estrutura algébrica nesse conjunto de funções.

  • @eraldoxavier6562
    @eraldoxavier6562 Год назад

    Foi um belíssimo vídeo esse; você aprendeu muito sobre profundidade; muito bom, Deus te abençoe. Eu falarei de Deus e as obras infinitas............. de Deus aqui; sim falarei, sim falarei; mais não agora não agora. Deus saberá. Um bom livro é o (tao te king). ✌️

  • @luizgxp
    @luizgxp Год назад

    Um vídeo infinitamente interessante!

  • @madaaz6333
    @madaaz6333 Год назад

    Ótimo vídeo!

  • @phelipepiva8125
    @phelipepiva8125 5 месяцев назад

    Pudia estar no Spotify!

  • @jonathasmaciel933
    @jonathasmaciel933 Год назад

    Será que consigo aulas completas da faculdade sobre esse assunto no youtube? E qual a prerrequisito acadêmico mínimo para não ficar muito por fora da tecnicalidade?

  • @emersonpereira1676
    @emersonpereira1676 Год назад

    Prof, boa noite! No exemplo da prova por absurdo que foi utilizada me surgiu uma dúvida. O novo número que surgiu na diagonal não poderia ser considerado como correspondente do último número natural usado somado de 1?

  • @hudsonscra
    @hudsonscra Год назад +1

    Existe pensamentos infinitos. Se somarmos todas as possibilidades de pensamentos de todos os pensantes, nunca acabaria.

  • @wesller1970
    @wesller1970 Год назад

    Poderia explicar como o TEOREMA de FERMAT foi resolvido?

  • @dombox7644
    @dombox7644 Год назад

    🏆✨👏👏👏👏👏👏👏
    Merece um Oscar do RUclips.

  • @victoralisson4311
    @victoralisson4311 Год назад

    Queee vídeo incrível!!!!

  • @ApenasAlexandre
    @ApenasAlexandre Год назад

    É uma pena eu ter tido contato com essa parte filosófica da matemática tão tarde na vida.

  • @suBUXA-zy6eu
    @suBUXA-zy6eu 21 день назад

    Eu amor teoria dos conjuntos❤❤❤

  • @XxLeonardoPiresxX
    @XxLeonardoPiresxX Год назад

    Que vídeo sensacional!

  • @eduardohonorato4738
    @eduardohonorato4738 Год назад

    Excelente video

  • @fabiano600
    @fabiano600 Год назад

    Se a matemática representa a realidade, então n deve haver algo infinito, apenas que n a conhecemos?

    • @EDPRK
      @EDPRK 2 месяца назад

      Mas há algo infinito, a imbecilidade humana, como diria einsten =)

  • @dombox7644
    @dombox7644 Год назад

    Esse Euclides era esperto até na linguagem 😂

  • @renatoigmed
    @renatoigmed Год назад

    Aqui eu tive uma pequena noção da minha falta de conhecimento da matéria quase infinita

  • @raphaelraiza
    @raphaelraiza Год назад

    Se aleph0 é menor que aleph1, mas de for maior que que C, em números irracionais? No microcosmos podemos definir o infinito dentro do infinito, além de se relacionarmos isso com a 3D mais o tempo, podemos especular, ou até me mesmo provar, as super corridas e a super simetria? Faz sentido pra vc?

  • @pedroduarte3315
    @pedroduarte3315 Год назад

    Obrigado !

  • @ricardolichtler3195
    @ricardolichtler3195 Год назад

    Minha formação não é de matemática, embora eu ame o assunto.
    Como leigo, eu entendo bem a questão dos infinitos nas cardinalidades. Mas, para mim, o infinito numérico per se - aquele usado em limites e séries - é outra abstração, quase sem relação.

    •  Год назад +1

      O infinito em limites e séries é enumerável, seria o infinito dos naturais. É porque para somar uma série você precisa fazer isso numa certa ordem: tem que ter um primeiro termo, segundo, terceiro etc. Tanto que você pode mudar o resultado de uma série trocando a ordem em que os termos são somados. Isso também cria dificuldades em atribuir um sentido para somas de uma quantidade não enumerável de termos, então somas infinitas se referem sempre a somas enumeráveis. Por exemplo, num contexto de espaços vetoriais com bases não enumeráveis, a restrição é que cada elemento do espaço possa ser expresso como uma soma enumerável de elementos da base.

  • @axelzoi
    @axelzoi Год назад

    Que vídeo bom!❤
    Eu só queria saber como demonstrar, que a quantidade de quadrados perfeitos de 1 até n é igual ou menor que √n.

    • @EffectJhonny
      @EffectJhonny Год назад +1

      É evidente que a quantidade de quadrados de 1 até k^2 é k. Tomando k^2=n, temos que a quantidade de quadrados perfeitos de 1 até n é √n.

  • @isamagno8694
    @isamagno8694 Год назад

    Q vídeo!!👏👏👏👏🤯

  • @paulojefferson1958
    @paulojefferson1958 Год назад

    Excelente

  • @fernandosaraiva8592
    @fernandosaraiva8592 Год назад

    Fantástico!

  • @furanxizuco
    @furanxizuco 11 месяцев назад

    Eu nao entendi pq o numero nao esta na lista. Alguem pode explicar?

  • @mateussztybersantiago5933
    @mateussztybersantiago5933 Год назад

    ok, então pelo que eu entendi ZF => HC é um exemplo de inconsistência da matemática prevista no teorema da incompletude?

    •  Год назад

      Não. Temos 3 coisas diferentes em jogo sobre a matemática:
      1) Completude (toda proposição VERDADEIRA pode ser provada)
      2) Consistência (não há contradições)
      3) Decidibilidade (é possível decidir se uma proposição é verdadeira ou falsa)
      A hipótese do contínuo é um exemplo do terceiro tipo, ela é indecidível: não podemos responder à pergunta sobre ela ser verdadeira ou falsa. Ela é independente de ZFC, mora em outro universo.
      Já uma proposição de Gödel é uma proposição verdadeira dentro do universo dos seus axiomas mas que não pode ser provada a partir desses mesmos axiomas.

  • @eduardohenrique9358
    @eduardohenrique9358 Год назад

    Estudei isso em Análise hoje e o cara lançou o vídeo hoje tbm kkkk

    •  Год назад

      ✌️😎👍

    • @luishenriquecoelhoramos6370
      @luishenriquecoelhoramos6370 Год назад

      Análise e álgebra 2 é onde o filho chora e a mãe não vê!
      Boa sorte Eduardo 🍀 🤞

  • @delsoncardoso1133
    @delsoncardoso1133 Год назад

    Eu acredito que tudo é infinito, desde o infinitamente pequeno até o infinitamente grande. Nós, seres humanos, somos limitados e nunca conseguiremos observar completamente o infinito.

  • @otasilva6562
    @otasilva6562 4 месяца назад

    O tempo futuro será infinito?

  • @MateusCavalcanteFonseca
    @MateusCavalcanteFonseca Год назад

    fico foderoso de mais o video, parabéns

  • @ritaaraujobrasil
    @ritaaraujobrasil Месяц назад

    A velocidade da luz é finita (300.000 km/s) apenas em escala macroscópica da matéria.
    Em nível microscópico (atômico e subatômico) a luz não tem velocidade finita, definida, certa, determinada.
    O emaranhamento de fótons nos prova isso, assim como a teoria quântica tradicional (ortodoxa).

  • @natanaelmachado7627
    @natanaelmachado7627 Год назад

    Então nesse caso, você concorda que o conjunto A={x∈ℝ| 1

    •  Год назад

      É isso. Qualquer conjunto com cardinalidade infinita pode ser colocado em correspondência bijetora com um subconjunto próprio (isto é, estritamente contido no conjunto original). Essa é uma propriedade que distingue cardinalidade finita da infinita: um conjunto é infinito se, é só se, puder ser posto em correspondência 1 pra 1 com um subconjunto próprio.

    • @natanaelmachado7627
      @natanaelmachado7627 Год назад

      @ eu estava pensando se era possível fazer uma bijeção dos números Naturais com o intervalo dos números reais de 0 a 1, e eu pensei em um jeito usando simetria, associa cada número x do conjunto dos naturais da forma a_1 10^0 + a_2 10^1 + a_3 10^2 + a_4 10^3 + ... com o número y do intervalo de 0 a 1 da forma a_1 10^(-1) + a_2 10^(-2) + a_3 10^(-3) + a_4 10^(-4) + ..
      por exemplo, o Natural 5 estaria associado ao decimal 0,5, o 14 ao 0,41, o 9167 ao 0,7619 não sei se é certo fazer isso...