Proving an Inequality Using Inequalities

Поделиться
HTML-код
  • Опубликовано: 5 ноя 2024

Комментарии • 184

  • @SyberMath
    @SyberMath  3 года назад +9

    Hello everyone! Here is the link to Math Elite's channel! Check it out:
    ruclips.net/user/mathelitefeatured

  • @michaelempeigne3519
    @michaelempeigne3519 3 года назад +36

    Quick method :
    AM - HM inequality
    ( x + y + z ) / 3 > or = 3 / [ ( 1 / x ) + ( 1 / y ) + ( 1 / z ) ]
    (x + y + z ) * [ ( 1 / x ) + ( 1 / y ) + ( 1 / z ) ] > or = 9

    • @davidbrisbane7206
      @davidbrisbane7206 3 года назад +4

      Now all you have to do is prove the AM-HM inequality 😂🤣.

    • @diogenissiganos5036
      @diogenissiganos5036 3 года назад

      @@davidbrisbane7206 that's easy haha

    • @davidbrisbane7206
      @davidbrisbane7206 3 года назад +1

      @@diogenissiganos5036
      🤣😂🤣😂

    • @diogenissiganos5036
      @diogenissiganos5036 3 года назад

      ​@@davidbrisbane7206 there is a geometric proof which is worth looking into

    • @davidbrisbane7206
      @davidbrisbane7206 3 года назад +1

      @@diogenissiganos5036
      Indeed there is geometric proof, but it only for two variables I think.

  • @dqrk0
    @dqrk0 3 года назад +17

    am-hm proves this is 10 seconds
    also with cauchy-schwartz it is pretty easy

  • @littlefermat
    @littlefermat 3 года назад +5

    This a straight forward application of the AM-GM inequality!
    There was a saying we say a lot in math Olympiad "All inequalities can be proven using the AM-GM inequality in a suitable manner" 😁

  • @titassamanta6885
    @titassamanta6885 3 года назад +4

    Application of AM-GM inequality gives us (x+y+z) >= 3 × cube root of xyz and (1/x+1/y+1/z) >= 3 × cube root of 1/xyz. Multiply the inequalities to get the reqd result. (Note that x, y and z are positive and hence we could use the inequality.)

  • @shj2980
    @shj2980 3 года назад +6

    “Cauchy-Schwarz inequality”

    • @3r3nite98
      @3r3nite98 3 года назад +1

      I know that one from Bri on one of his videos.
      It looks pretty awesome.

  • @goodplacetostop2973
    @goodplacetostop2973 3 года назад +7

    14:34 Can we extend it for 4 values x, y, z, t or even find a formula for n values : (x1 + x2 + … + xn)(1/x1 + 1/x2 + … + 1/xn) > X ?

    • @juauke
      @juauke 3 года назад +3

      We can indeed :
      Assuming all x_i are positive
      Let < | > be the canonical inner product in Rⁿ and || || its euclidian norm.
      The Cauchy-Schwarz inequality in Rⁿ with X:=(√x_i)_{1 ≤ i ≤ n) and Y:=(1/√x_i)_{1 ≤ i ≤ n} yields :
      ||X|| ||Y|| ≥ ||
      i.e (by squaring both sides) :
      ||X||² ||Y||² ≥ ²
      Which is equivalent to :
      Σ((√x_i)², i=1, n) * Σ((1/√x_i)², i=1, n) ≥ [Σ(√x_i*1/√x_i, i=1, n)]²
      Since all x_i are positive and Σ(√x_i*1/√x_i, i=1, n)=Σ(1, i=1, n) = n, we have :
      Σ(x_i, i=1, n) * Σ(1/x_i, i=1, n) ≥ n²
      And as a special case (for n = 4), we get that :
      For any x, y, z, t > 0,
      (x+y+z+t)(1/x + 1/y + 1/z + 1/t) ≥ 4² = 16

    • @goodplacetostop2973
      @goodplacetostop2973 3 года назад

      @@juauke Thanks!

    • @juauke
      @juauke 3 года назад

      @@goodplacetostop2973 you're welcome ;)

    • @SyberMath
      @SyberMath  3 года назад +2

      Very nice!

    • @شرحمبسطلرياضيات
      @شرحمبسطلرياضيات 3 года назад

      N^2

  • @krishnaats7141
    @krishnaats7141 3 года назад +2

    It was fun. I wrote lol in my notes looking at the long method..
    AM>=HM will solve in a couple of seconds though..

  • @carly09et
    @carly09et 3 года назад +1

    Symmetry x=y=z == 1 is the minimum as (1+ 1 + 1)(1+1+1) >= 9 at 9=9 if you perturb any variable the inequality increases. A.1/A = 1 so a 9 can be found 3.Ax 3.1/A == 9.1 :)

    • @sytrostormlord3275
      @sytrostormlord3275 Год назад

      well not realy, this function gives 9 anytime x=y=z, not only when they are equal to 1 ;)

  • @matniet43
    @matniet43 3 года назад +7

    The Cauchy - Schwartz inequality would be best here imo

    • @ayush7800
      @ayush7800 3 года назад +4

      AM ≥ HM will work best here..

    • @matniet43
      @matniet43 3 года назад +3

      @@ayush7800 Thinking about it, they're both straightforward in the same way

    • @thangnguyen-iw8tb
      @thangnguyen-iw8tb 3 года назад +1

      in Vietnam they call it Bunyakovsky,weird right?

    • @dickson3725
      @dickson3725 3 года назад +1

      @@thangnguyen-iw8tb stated by Cauchy proven by bunyakovski and integral form by Herman Schwarz i guess

    • @matniet43
      @matniet43 3 года назад

      @@thangnguyen-iw8tb just looked it up on wikipedia real quick, and in fact sometimes it's even called Cauchy - Bunyakovsky - Schwarz inequality. And yea, it's odd to hear another name apart from the usual two

  • @davidbrisbane7206
    @davidbrisbane7206 3 года назад +1

    We can define
    F(x,y,z) = (x+y+z)(1/x + 1/y + 1/z) and use multivariable calculus to find the minimum.
    When we do this, we find the minimum occurs when
    x² = yz, y² = xz and z² = xy.
    _These equations tell us that_
    _xyz = x³ = y³ = z³_
    _So, x = y = z, when F(x,y,z) is a minimum, as x, y and z are all positive._
    _So the minimum of_
    _F(x,y,z)_
    _= (x + x + x)(1/× + 1/x + 1/x)_
    _= (3x)(3/x) = 9_
    _So, F(x,y,z) ≥ 9, but let's go for overkill 😁_
    If we substitute x² = yz into F(x,y,z), we find
    F(x,y,z)
    = (1 + y/x + z/x)² after several algebraic step
    = (1 + y/x + x/y)², as x² = yz, so x/y = z/x
    So, we need to show that (1 + y/x + x/y) ≥ 3.
    We can now define G(x,y) = 1 + y/x + x/y and using multivariable calculus (again), we find the minimum occurs when x = y.
    So, (1 + y/x + x/y) = 3 is the minimum of
    G(x,y), as x = y.
    So, F(x,y,z) ≥ (1 + y/x + x/y)² = 3² = 9.
    Long story short. Multivarable calculus can solve this problem, but using inequalities is way easier and aesthetically more pleasing 😁

  • @sabyasachimedda8129
    @sabyasachimedda8129 3 года назад +1

    Replacing x with xy expresses the elegance of the solution.

  • @satyapalsingh4429
    @satyapalsingh4429 3 года назад +1

    Oooh , Very Interesting . Heart filled with joy

  • @ЧингизНабиев-э2г
    @ЧингизНабиев-э2г 3 года назад +6

    Damn it, I remember getting this task on local olympiad and failing … :(

  • @otakurocklee
    @otakurocklee 3 года назад

    Very nice. I was approaching the 2nd method but didn't figure it out.

  • @lesnyk255
    @lesnyk255 3 года назад

    I blundered around with this for a bit and came to within a few yards of your #1 result, but got lost in the weeds! Thanks for taking me by the hand and leading me the rest of the way!

  • @notananimenerd1333
    @notananimenerd1333 3 года назад

    Please solve this question next!
    4abc=(a+3)(b+3)(c+3) where a,b,c are integers which are all greater than all equal to 4

    • @davidbrisbane7206
      @davidbrisbane7206 3 года назад

      Assume a ≥ b ≥ c,
      or that a + 3 ≥ b + 3 ≥ c + 3, and you'll make progress.

  • @yoav613
    @yoav613 3 года назад +3

    I noticed that your second method is alwaus nicer than the first method, to make us watch the all video😀

  • @BiscuitZombies
    @BiscuitZombies 3 года назад

    Ok before watching, I did it like this:
    Held y and z constant, solved for x where the expression is at a minimum (using calculus):
    x = sqrt(yz)
    Sub this in, hold z constant and repeat for 'y':
    y = z
    Thus, it can be found that x=sqrt(y^2)=sqrt(z^2), that is: x=y=z.
    Sub this back in and we find that:
    min(function) = (x+x+x)(1/x+1/x+1/x) = 3x*3/x = 9.

  • @techysubham1939
    @techysubham1939 3 года назад

    Best channel i have found so far, can we do beautiful questions of permutations and combinations

  • @anamika9355
    @anamika9355 3 года назад +1

    Was an amazing session as always!!

  • @josephsilver9162
    @josephsilver9162 3 года назад

    Very nice. I like both methods.

  • @sujanshankarbhowmick9381
    @sujanshankarbhowmick9381 3 года назад

    For the summation 2+3+6+7+10+11+14+15+.............+(4x+2)+(4x+3)=Z^n, where n>1, how many +ve integral solutions for Z are possible? Dare to solve this simple-looking, Elegant & tough problem?

  • @aliasgharheidaritabar9128
    @aliasgharheidaritabar9128 3 года назад

    Your channel is so useful and fun.

  • @michaelenlen1551
    @michaelenlen1551 3 года назад

    Another nice solution is to evaluate the minimum of f(x,y,z)= (x + y + z)*(1/x + 1/y + 1/z) by solving df = 0 . One gets x = y = z = 1 with min(f(x,y,z)) = 9.
    This also works for more variables (f(x1, x2, .... xn)

    • @SyberMath
      @SyberMath  3 года назад

      How do you evaluate df?

    • @michaelenlen1551
      @michaelenlen1551 3 года назад

      @@SyberMath What we need is the gradient of f. Each component of the gradient must be zero. Accordingly after some manipulations we get three equations: x = yz; y = xz and z = xy. If we solve that, we get one positive solution: x = y = z = 1.

    • @michaelenlen1551
      @michaelenlen1551 3 года назад

      O.k., what then still is to be done is to show that that is a minimum, but for the symmetrie of the problem this will be done by evaluating the function just anywhere.

  • @ashikrasool6609
    @ashikrasool6609 3 года назад +2

    Thanos: I used the inequality to prove the inequality

  • @gdtargetvn2418
    @gdtargetvn2418 3 года назад

    You can also use Sedrakyan's inequality to prove that 1/x+1/y+1/z is always greater or equal to 9/(x+y+z)
    1/x+1/y+1/z >= ((1+1+1)^2)/(x+y+z)=9/(x+y+z) for any positive reals x,y,z
    Therefore, (x+y+z)(1/x+1/y+1/z)>=(x+y+z)*9/(x+y+z)=9 for any positive reals x,y,z
    The equality is only attained for x=y=z

  • @tonyhaddad1394
    @tonyhaddad1394 3 года назад +1

    In my opinion the 2 methode are cool , 1st one help us to solve a more complicated inequality the 2nd one is less pain !!!

  • @chaparral82
    @chaparral82 3 года назад +1

    Quite complicated, just distribute it and then replace x/y = u, y/z = v and z/x = w.
    Then you will receive u+1/u + v+1/v + w + 1/w >= 6
    It is easy to show that x + 1/x >= 2 if x is positive. q.e.d

  • @krishnanadityan2017
    @krishnanadityan2017 3 года назад

    (x+y+z)(1/x+1/y+1/z)=3+([u+1/u]+[v+1/v]+[w+1/w]) where u=x/y,v=y/z and w=z/x.
    now u+1/u=(u^2+1)/u>=2 ...etc. because (u-1)^2>=0.
    Hence the above RHS in the equation is >=9. Hence the result.

  • @ryderpham5464
    @ryderpham5464 3 года назад +1

    By Cauchy-Schwarz,
    [(√x)^2+ (√y)^2+ (√z)^2)][(1/(√x))^2 + (1/(√y))^2 + (1/(√z))^2)]
    = (x+y+z)(1/x+1/y+1/z)
    ≥ (1+1+1)^2
    = 9.

  • @tonyhaddad1394
    @tonyhaddad1394 3 года назад

    Awesome !!! as always good job !!!

    • @SyberMath
      @SyberMath  3 года назад +1

      Thank you so much 😀

  • @pardeepgarg2640
    @pardeepgarg2640 3 года назад +1

    A math problem a day keeps the online classes away 🤣🤣🤣🤣🤣🤣🤣🤣

  • @ninonakano9466
    @ninonakano9466 3 года назад +1

    You can solve it in just 5s by using cauchy-schwarz inequality or AM-HM

  • @carloshuertas4734
    @carloshuertas4734 3 года назад

    Another great explanation, SyberMath!

    • @SyberMath
      @SyberMath  3 года назад

      Glad you think so, Carlos! 😊

  • @ZIN24031980
    @ZIN24031980 3 года назад

    Good idea

  • @aashsyed1277
    @aashsyed1277 3 года назад

    Thanks 😊😊😊😊😊👍👌👍☺️great explanation 😊😄😊😄

  • @minhton484
    @minhton484 3 года назад

    What is condition of x,y,z so that the inequality equal to 9?

  • @s1mpelness771
    @s1mpelness771 Год назад

    we can use Cauchy Schwarz inequality right?

  • @MathElite
    @MathElite 3 года назад +2

    Oooh this sounds very interesting

    • @MathElite
      @MathElite 3 года назад +2

      protecting my comment from "don't be evil" but evil youtube spam detectors

    • @leecherlarry
      @leecherlarry 3 года назад +1

      @@MathElite compi says 𝚃𝚛𝚞𝚎

    • @aashsyed1277
      @aashsyed1277 3 года назад

      @@MathElite are you a member?

    • @goodplacetostop2973
      @goodplacetostop2973 3 года назад

      Crossover video when? 😛

    • @aashsyed1277
      @aashsyed1277 3 года назад

      @@goodplacetostop2973 hello ....

  • @aashsyed1277
    @aashsyed1277 3 года назад

    Wow syber you are awesome good example

  • @manojsurya1005
    @manojsurya1005 3 года назад +1

    I liked the 2nd method as usual, bcoz the first method doesn't seems to be obvious to me, líke thinking of 2 inequality, multiplying them, replacing x with xy, the second method was short and good too 😁

  • @satoruhonda5230
    @satoruhonda5230 3 года назад

    i first thought of cauchy-schwartz inequality

  • @aashsyed1277
    @aashsyed1277 3 года назад +1

    Now me ready by chen lu do you mean chain rule?

    • @3r3nite98
      @3r3nite98 3 года назад

      Uhh of course I do,but bprp and Dr peyam call It the Chen Lu and so do their fans too.
      Besides be glad that I read your comment,besides this is not how youd reply to someone, but your 9 so its kind of ok,when youll age youll reply properly I think.

    • @aashsyed1277
      @aashsyed1277 3 года назад

      @@3r3nite98 9 years old I am.

  • @justjacqueline2004
    @justjacqueline2004 3 года назад

    Clever. Like the first method though.

  • @tambuwalmathsclass
    @tambuwalmathsclass 3 года назад

    I won't get tired of seeking what I have no knowledge about.
    I'm always getting new subscribers yet getting fewer views. And I've applied different logics 😔

  • @vizirudominic6218
    @vizirudominic6218 4 месяца назад

    Using CBS we get (x+y+z)(1/x+1/y+1/z)>=(1+1+1)^2=9 =)))

  • @peterdachev3106
    @peterdachev3106 3 года назад

    can you please prove the following:
    let :a+b+c = 1 and a,b,c are non-negative
    prove that 1/(1-a*a) + 1/(1-b*b) + 1/(1-c*c) > 189/62

  • @deepghosh7626
    @deepghosh7626 3 года назад +1

    Just do AM>=HM

  • @3r3nite98
    @3r3nite98 3 года назад

    Hmm yes the floor is made out of floor.
    Memes aside,Your awesome Syber so keep It up and I found away to do integrals (where Partial Fractions or pf the short cut is intended) without pf.

  • @rssl5500
    @rssl5500 3 года назад

    Hello sybermath this is an interesting problem
    Btw are you sick? Seems like you have a cold? I hope not but if you have a cold I hope you get better soon

    • @SyberMath
      @SyberMath  3 года назад

      I'm not feeling well. Thanks for asking. 💖
      That's why I sounded that way

    • @rssl5500
      @rssl5500 3 года назад

      Oh I hope you get better soon

  • @riade-yet1489
    @riade-yet1489 3 года назад +1

    I prefer the second method it’s very soft and cute. Towards the first one wich is less nice 😎. But can we talk about cute mathematics ? I think yes. when most people talk about mathematics as an ugly studies.

    • @falknfurter
      @falknfurter 3 года назад +1

      The famous mathematician G. H. Hardy said: "Beauty is the first test: There is no permanent place in the world for ugly mathematics."

  • @UneFenetreSurLeMonde
    @UneFenetreSurLeMonde 3 года назад

    Wonderfull

  • @math2693
    @math2693 3 года назад

    Veeeery Advanced however super interesting

  • @deepjyoti5610
    @deepjyoti5610 3 года назад

    Nyc vedio

  • @cheatcoder1852
    @cheatcoder1852 Год назад

    You should make a discord sever I would love that

    • @SyberMath
      @SyberMath  Год назад +1

      Thank you for the suggestion! I'm planning to. Hopefully when I have some time...

  • @thietsniper3699
    @thietsniper3699 3 года назад +1

    Cosy

  • @sytrostormlord3275
    @sytrostormlord3275 Год назад

    solved it in my head while hanging the laundry...
    (x+y+z)(1/x+1/y+1/z) >= 9
    so let's multiply all that:
    x/x +x/y+x/z+y/x+y/y+y/z +z/x+z/y+z/z >= ??
    now simplify and reorganize:
    1+ x/y +y/x + 1 + y/z + z/y + 1 +z/x +x/z >=??
    3 + (x/y + y/x) + (y/z + z/y) + (z/x + x/z) >= ??
    not let's take closer look at (x/y +y/x) and try to calculate how much it is and we can assume same reasoning can be applied to other 2 similiar parts of out equation:
    x/y + y/x = ?
    let's make it one fraction:
    x*x/yx + y*y/yx = (x^2 + y^2)/xy
    let's assume
    (x^2+y^2)/xy = k
    x^2 +y^2 = kxy
    x^2 - kxy +y^2 =0
    Let's solve the above for x.
    We count delta = b^2 -4ac, and our
    a= 1
    b= -ky
    c= y^2
    we get delta = (-ky)^2 -4y^2
    delta = k^2y^2-4y^2 = y^2(k^2-4)
    for equations to have a real solution delta needs to be >=0
    so
    y^2(k^2-4) >=0
    and y^2 cannot be 0, because y >0
    k^2-4 >=0
    k^2 >= 4
    k >=2 or k =2 or x/y+y/x =2
    and that leads back to our equation:
    3 + (x/y + y/x) + (y/z + z/y) + (z/x + x/z)
    and since all 3 parts in parenthesis are similiar (we can solve each of them in the same way as x/y +y/x) they all must be greater or equal 2
    which means, our whole equation is greater or equal to 9

  • @Josh-cd3zf
    @Josh-cd3zf 3 года назад +1

    Couldn't you just do the AM-GM inequality?

  • @aashsyed1277
    @aashsyed1277 3 года назад

    Even if x y z are all negative, this inequality still works

    • @SyberMath
      @SyberMath  3 года назад

      If one is negative, others are positive it does not work

  • @physicist55
    @physicist55 3 года назад

    Hocam,eski videolar gibi türkçe videolar da gelse az da olsa ,böyle anlamak zor oluyor:/

    • @SyberMath
      @SyberMath  3 года назад

      Ingilizce sonra da Turkce kafa karistirici olur izleyiciler icin. Ingilizce ogrenirsen anlayabilirsin. Hem bu senin icin cok iyi bir sey olur. Hem de ortami kolaylastirmak yerine ortama kendini uydurmus olursun.

    • @physicist55
      @physicist55 3 года назад

      Peki ,hocam teşekkürler.Bunun için önerebileceğiniz yabancı kaynak var mı ,bu tarz sorular için veya konu anlatımı (Cebir için ya da Analiz?

  • @vladimirdjurica2614
    @vladimirdjurica2614 3 года назад

    @SyberMath Have you checked my problems

  • @Mathskylive
    @Mathskylive 2 года назад

    Bài bất đẳng thức quá đơn giản

  • @adamadam-vx7zq
    @adamadam-vx7zq 3 года назад

    Magic methode is AM-GM

  • @krisbrandenberger544
    @krisbrandenberger544 3 года назад

    I liked the 2nd method better.

  • @prasanth123cet
    @prasanth123cet 3 года назад

    Quick method is a better proof

  • @pravargupta6285
    @pravargupta6285 3 года назад

    All jee students please give attendence!!

  • @umut1269
    @umut1269 3 года назад

    Abi ayt 2021 sorularını çözsen hiç yadırgamam :D

    • @SyberMath
      @SyberMath  3 года назад

      Sorularin telif hakkini bir sirket satin almis ve youtube'da cozenlere dava aciyor diye duydum. Eee kafadan para 😂

    • @umut1269
      @umut1269 3 года назад

      @@SyberMath Siz gordunuz mu sorulari bilmiyorum ama bence zordu pek cok baska sinava kiyasla ya ben 34 isaretledim kodlama hatam yoksa dogru hepsi ama pek cok kisi (en azindan cevremdeki) 30 zor isaretledik diyor umarim hakkimizda hayirlisi olur

    • @umut1269
      @umut1269 3 года назад

      Bu arada vesile oldu tekrardan bu kanali actiginiz icin cooook tesekkurler pek cok insan icin muthis bir is gerceklestiriyorsunuz gerci benim de biraz kafami celmiyor degilsiniz turkiyede yasadigimi unutup matematik okusam mi diye ama :D anyway tekrardan sonsuz minnet ❤❤

  • @mohammedhafiz5460
    @mohammedhafiz5460 3 года назад

    me who knows C-S
    ez

  • @hauho3368
    @hauho3368 3 года назад

    Cái này ez