Feyman's trick saves the day (again)

Поделиться
HTML-код
  • Опубликовано: 9 ноя 2024

Комментарии • 22

  • @ВикторПоплевко-е2т
    @ВикторПоплевко-е2т 2 месяца назад +2

    your calculus teacher is having a heart attack looking at this notation

  • @slavinojunepri7648
    @slavinojunepri7648 2 месяца назад +3

    Excellent 👌

  • @mohandoshi153
    @mohandoshi153 2 месяца назад +1

    Great video and great evaluation. Please do some videos on the Lobachevsky Dirichlet Integral Formula.

    • @owl3math
      @owl3math  2 месяца назад

      Hi Mohan. Thanks! 🙏

    • @derickd6150
      @derickd6150 6 дней назад

      Ahhh just name dropping something completely unrelated to show you know about it,nice

  • @ashishraje5712
    @ashishraje5712 2 месяца назад +1

    Great

  • @the.lemon.linguist
    @the.lemon.linguist 2 месяца назад +1

    even with the mistakes, it's still a great video!

    • @owl3math
      @owl3math  2 месяца назад

      Thanks! Yeah I noticed a bunch of mistakes but still I couldn’t delete it. 😂

    • @the.lemon.linguist
      @the.lemon.linguist 2 месяца назад +1

      @@owl3math math practice is still math practice no matter what
      so any and all attempts at a problem, mistakes and such included, are definitely worthwhile

    • @owl3math
      @owl3math  2 месяца назад +1

      @@the.lemon.linguist Yes i feel the same. I considered deleting this one but it's a good problem and feel like people can still get something from this one. :)

  • @holyshit922
    @holyshit922 2 месяца назад +1

    It is possible to calculate it with basic calculus skills taught at the beginning of integral calculus course
    but it may not be the quickest way to do it

    • @owl3math
      @owl3math  2 месяца назад

      With integration by parts?

    • @holyshit922
      @holyshit922 2 месяца назад +1

      @@owl3math Basically there are substiutuions such as t = tan(x/2) , u = 1/t, w = (1 - u)/(1+u),
      linearity of integral , additive property over interval of integration, integration by parts , (geometric) series expansion ,exchanging order of summation and integration, integration by parts again

    • @owl3math
      @owl3math  2 месяца назад

      @@holyshit922 wow many ways! 😆 thanks!

  • @txikitofandango
    @txikitofandango 2 месяца назад +2

    1 + (1/2)cos(x) reminded me of a sum-to-power formula, so I ended up with some 1 + 2cos^2(x/2) and 1 - 2cos^2(x/2) stuff, but I couldn't make it work

    • @owl3math
      @owl3math  2 месяца назад +1

      gotcha thats interesting. I don't think I have an alternative method for this one

  • @ve4rexe
    @ve4rexe 2 месяца назад +1

    can we use feynman’s trick for indefinite integrals? if so, could you do an example video of such?

    • @owl3math
      @owl3math  2 месяца назад

      Yes, it can be done. You see it much less frequently with Feynman's technique. I think I may have one in mind but not sure if I want to do a video. I'll check :)

    • @ve4rexe
      @ve4rexe 2 месяца назад +1

      ⁠@@owl3math please show how ‼️😭🙏 i beg i NEED to learn this for indefinite integrals