Lecture 34: Design of Compression Members

Поделиться
HTML-код
  • Опубликовано: 15 дек 2024

Комментарии • 27

  • @ramavathganesh7226
    @ramavathganesh7226 3 года назад +2

    In finding area we have to factored load =1.5*250=375kn in problem it is axial load

  • @abhisheksagar4510
    @abhisheksagar4510 3 года назад +1

    In question already the effective length has been given..

  • @abhisheksagar4510
    @abhisheksagar4510 3 года назад

    Why wasn't rv used as rv in calculating radius of gyration?

  • @vanshitagupta7856
    @vanshitagupta7856 4 года назад +1

    How to write the code

  • @ujwalkachade7066
    @ujwalkachade7066 3 года назад

    as already Leff provided then why we are multiplying it by 0.85 ????
    is it because we are using double angle section ???

  • @vakulgoel1335
    @vakulgoel1335 5 лет назад +1

    Can anybody explain me how rv dash has been written by parallel axis theorem

    • @shivamsharanlall672
      @shivamsharanlall672 4 года назад +7

      Since it is an equal angle,
      Cyy = Cxx
      Cvv=sqrt( Cxx^2 + Cyy^2)
      Cvv= sqrt(2) * Cxx
      = sqrt(2)*Cyy
      Multiply sqrt(2) both sides
      Sqrt(2) * Cvv = (2)* Cyy
      ... eq1
      Now, { rt(tg^2 +tg^2)} /2
      =tg/ rt(2)
      Using parallel axes thm.,
      I'vv =
      2( Ivv + A (Cvv + tg/rt(2)^2)
      =
      2(Ivv +A(rt(2)* Cvv +tg)^2/2)
      =
      2(Ivv+A(2Cyy+ tg) ^2 /2)... using eq1
      r'vv = rt(I'vv / 2A)
      =rt{rvv +(1/2)*(2Cyy+tg)^2}
      (1/2) * (2Cyy + tg)^2
      =
      (4/2)*(Cyy+ tg/2)^2

    • @raghvendrarai5933
      @raghvendrarai5933 4 года назад +3

      Great work, thanks for taking the pain to explain.

    • @ujwalkachade7066
      @ujwalkachade7066 3 года назад +3

      @@shivamsharanlall672 thanks vro

  • @abhisheksagar4510
    @abhisheksagar4510 3 года назад

    In calculating Rv . Why is Cy used?? Cv should be used..

    • @ramnandankumar9130
      @ramnandankumar9130 4 месяца назад

      Cv will be cy*root2 so after doing square it will be 2cy^2 so it correct

  • @gautampadibhar5261
    @gautampadibhar5261 4 года назад +1

    To the Creator of this video... please add suitable titles for each lesson instead of just Module number and Lecture number.
    It is difficult to locate a particular lecture again. Please do it if you can. It would be great help for students. Thank you.

  • @open_game_box944
    @open_game_box944 6 лет назад

    How rv dash come

    • @AmitKumar-wl8ok
      @AmitKumar-wl8ok 5 лет назад +1

      Apply parallel axis theorem between vv axis of individual angle section and vv axis of combined section

    • @shivamsharanlall672
      @shivamsharanlall672 4 года назад +2

      Since it is an equal angle,
      Cyy = Cxx
      Cvv=sqrt( Cxx^2 + Cyy^2)
      Cvv= sqrt(2) * Cxx
      = sqrt(2)*Cyy
      Multiply sqrt(2) both sides
      Sqrt(2) * Cvv = (2)* Cyy
      ... eq1
      Now, { rt(tg^2 +tg^2)} /2
      =tg/ rt(2)
      Using parallel axes thm.,
      I'vv =
      2( Ivv + A (Cvv + tg/rt(2)^2)
      =
      2(Ivv +A(rt(2)* Cvv +tg)^2/2)
      =
      2(Ivv+A(2Cyy+ tg) ^2 /2)... using eq1
      r'vv = rt(I'vv / 2A)
      =rt{rvv +(1/2)*(2Cyy+tg)^2}
      (1/2) * (2Cyy + tg)^2
      =
      (4/2)*(Cyy+ tg/2)^2

    • @sonukumarsah4020
      @sonukumarsah4020 4 года назад

      @@shivamsharanlall672 rt...? what is rt here bro after eqn1

    • @shivamsharanlall672
      @shivamsharanlall672 4 года назад

      @@sonukumarsah4020 root- rt

    • @shivamsharanlall672
      @shivamsharanlall672 4 года назад

      Square root

  • @thippareddyappannagari9795
    @thippareddyappannagari9795 6 лет назад

    same doubt

    • @sunavdas7678
      @sunavdas7678 4 года назад +1

      Use phythagoras theorem to find the shift of Cv' from Cv = √y1^2+y2^2
      y1= Cx+Tg/2
      y2= Cy+ Tg/2
      since for equal ISA angles Cx=Cy, so is the result as obtained.
      Note:: No shift in Cu.

  • @thippareddyappannagari9795
    @thippareddyappannagari9795 6 лет назад

    rv das how came

    • @AmitKumar-wl8ok
      @AmitKumar-wl8ok 5 лет назад

      Apply parallel axis theorem between vv axis of individual angle section and vv axis of combined section

    • @shivamsharanlall672
      @shivamsharanlall672 4 года назад

      Since it is an equal angle,
      Cyy = Cxx
      Cvv=sqrt( Cxx^2 + Cyy^2)
      Cvv= sqrt(2) * Cxx
      = sqrt(2)*Cyy
      Multiply sqrt(2) both sides
      Sqrt(2) * Cvv = (2)* Cyy
      ... eq1
      Now, { rt(tg^2 +tg^2)} /2
      =tg/ rt(2)
      Using parallel axes thm.,
      I'vv =
      2( Ivv + A (Cvv + tg/rt(2)^2)
      =
      2(Ivv +A(rt(2)* Cvv +tg)^2/2)
      =
      2(Ivv+A(2Cyy+ tg) ^2 /2)... using eq1
      r'vv = rt(I'vv / 2A)
      =rt{rvv +(1/2)*(2Cyy+tg)^2}
      (1/2) * (2Cyy + tg)^2
      =
      (4/2)*(Cyy+ tg/2)^2

  • @simar6582
    @simar6582 2 года назад

    Can anybody explain me how rv dash has been written by parallel axis theorem?