Ridge And Lasso Regression Indepth Maths Intuition In hindi

Поделиться
HTML-код
  • Опубликовано: 6 янв 2025

Комментарии •

  • @netviz8673
    @netviz8673 4 месяца назад +6

    Ridge and Lasso regression. To prevent overfitting that can occur in linear regression.
    Ridge regression: L2 regularisation, you add lambda*(slope)^2, a penalising parameter
    Lassos regression: add lambda|slope| as penalising parameter to the residual error.aka L1 regualrisation
    This prevents overfitting as well as feature selection is done

  • @vinaypritwani
    @vinaypritwani Год назад +5

    Hi Kirsh, this hindi channel is gold for data science aspirants, I request please make more videos on this hindi channel.

  • @HarshalGarud
    @HarshalGarud 2 года назад +17

    I think For underfitting -
    High bias and low variance.
    Please check it once.
    Thanks.

  • @loprekira6512
    @loprekira6512 Месяц назад

    bro this is just mind blowing explanation this is the first time i have understood something so clearly

  • @ashishvinod2193
    @ashishvinod2193 Год назад

    Best Video sir Thank you for the giving precious knowledge for free👍👍👍👍

  • @bmsstrugglersunitedtransyl3621
    @bmsstrugglersunitedtransyl3621 7 месяцев назад +1

    Thankyou sir for the beautiful content..your videos are very informative and helpful. 😊

  • @bp2807
    @bp2807 2 года назад +4

    Hi krish. Thanks for all your amazing sessions. Please add continue with more SQL videos

  • @akhilsingh5251
    @akhilsingh5251 2 года назад +2

    Amazing content sir waiting for the next video.

  • @IrfanSaleem541
    @IrfanSaleem541 5 месяцев назад

    Thanks. You are doing a fantastic job. stay blessed, and greetings from Oman.

  • @digitallight6838
    @digitallight6838 3 месяца назад

    Thanks sir for providing such a good content 😊

  • @sakshitonde5979
    @sakshitonde5979 7 месяцев назад

    Thankyou for the great explanation!!!

  • @akhtarattar2744
    @akhtarattar2744 2 года назад

    amazing hindi session it was very easy to understand ... plz explain linear regression,ridge and lasso python code in hindi

  • @HarshalGarud
    @HarshalGarud 2 года назад

    High level of teaching

  • @vanshajsood2840
    @vanshajsood2840 7 месяцев назад

    Sir can u explain more on how L1 used for feature selectin bez in both their is vector summation and thus squaring the coefficients

  • @elonmusk4267
    @elonmusk4267 9 месяцев назад +1

    that was freaking great

  • @hetchaudhari
    @hetchaudhari 3 месяца назад

    And what would be the formulae for updation of the parameters?

  • @AshishKumar-qj5nf
    @AshishKumar-qj5nf 7 месяцев назад

    How do you calculate lambda constant value ?

  • @dipesh_chatrola
    @dipesh_chatrola Год назад

    Great video! What role does the Lambda value play here? I mean, what effect does it have on bias and variance if I change (increase or decrease) it?

  • @descendantsoftheheroes_660
    @descendantsoftheheroes_660 2 года назад

    Thanks for machine learning

  • @AlokPratapSingh4001
    @AlokPratapSingh4001 2 года назад +1

    Thank you Sir

  • @ashishpaliitbombay8997
    @ashishpaliitbombay8997 2 года назад +1

    sir please upload the RandomForest algorithms

  • @vaibhavpandey7398
    @vaibhavpandey7398 2 года назад

    Bhaiya ji x theta n y i. R they specific to machine learning because econometrics me hum simply ise beta hat likh dete h

  • @deveshmishra3513
    @deveshmishra3513 Год назад +3

    this video is a recommendation for bias vs variance and not Ridge and Lasso BAM!! DOUBLE BAM!!

  • @shubhamkulkarni1202
    @shubhamkulkarni1202 8 месяцев назад

    but what that lambda means?
    he directly put value but if someone asked what is lambda then how we have to answer? pls guide

    • @AradhyaSingh-un8di
      @AradhyaSingh-un8di 3 месяца назад

      that lambda is regularization parameter.
      read more about regularization you will get to know

  • @VaibhaviRamteke-r8i
    @VaibhaviRamteke-r8i 10 месяцев назад

    How do we select the value of lambda?

    • @amanrazz2091
      @amanrazz2091 10 месяцев назад +1

      Using cross validation

  • @siddheshbadakh6046
    @siddheshbadakh6046 3 месяца назад

    Overfitting (Low Bias, High Variance): The model fits the training data well but fails to generalize.
    Underfitting (High Bias, Low Variance): The model is too simplistic and doesn't fit the training data well or generalize.

  • @shahbazkhalid6950
    @shahbazkhalid6950 4 месяца назад +3

    Here is one correction:
    1. Overfitting: Low bias and high variance.
    2. Underfitting: High bias and low variance.

  • @Avsjagannath
    @Avsjagannath Год назад

    amazing sir
    sir plz provide notes and code doc

  • @pkumar0212
    @pkumar0212 6 месяцев назад

    👌

  • @vaibhavpandey7398
    @vaibhavpandey7398 2 года назад

    Secondly, why overfit is a problem?

    • @tejassrivastava6971
      @tejassrivastava6971 2 года назад +2

      Model may not be able to perform well on new datasets.
      Example: Assume a Kid having a math test who over practiced 100 Questions at home. But in test, he has been asked some new kind of Questions. How likely he will be able to perform well? Very low right. Thats why.

  • @ajaykushwaha-je6mw
    @ajaykushwaha-je6mw 2 года назад

    Can anyone help: How to check accuracy for train data nd Test data so that we can know overfitting and underfitting condition ?

    • @bhushanshirwadkar4668
      @bhushanshirwadkar4668 2 года назад

      if you know answer for this question then please let me know.

    • @shraddhashete9184
      @shraddhashete9184 Год назад

      Find accuracy score for (y_train, y_pred) for training data.
      And accuracy score (y_test, y_pred) for testing data.

  • @Amankumar-sb4jn
    @Amankumar-sb4jn Год назад +1

    Bro tum bhut ganda padha rhe ho, sach mein, conceptual knowledge bilkul nhi h tumhe.

    • @MovieOk-p8q
      @MovieOk-p8q 10 месяцев назад

      Yes, I think you are right.
      Kisi bhi cheez ki defination ni likhwaya hai.
      Direct graph and. Formula likhwa diya hai.

  • @RajanSingh-xr7cf
    @RajanSingh-xr7cf 4 месяца назад

    kuch bhi smz ni ayya ..............kya yrr.....pta nai kya padya

  • @prakashiyer1996
    @prakashiyer1996 2 года назад

    Thank you sirjee

  • @bhushanshirwadkar4668
    @bhushanshirwadkar4668 2 года назад +1

    Can anyone help: How to check accuracy for train data nd Test data so that we can know overfitting and underfitting condition ?

    • @shraddhashete9184
      @shraddhashete9184 Год назад +1

      Find accuracy score for (y_train, y_pred) for training data.
      And accuracy score (y_test, y_pred) for testing data.