Can you find area of the Triangle ABC? | (Inscribed Circle) |

Поделиться
HTML-код
  • Опубликовано: 8 фев 2025
  • Learn how to find the area of the Triangle ABC. Important Geometry skills are also explained: circle theorem; Pythagorean theorem; triangle area formula; Two tangent theorem. Step-by-step tutorial by PreMath.com
    Today I will teach you tips and tricks to solve the given olympiad math question in a simple and easy way. Learn how to prepare for Math Olympiad fast!
    Step-by-step tutorial by PreMath.com
    • Can you find area of t...
    Need help with solving this Math Olympiad Question? You're in the right place!
    I have over 20 years of experience teaching Mathematics at American schools, colleges, and universities. Learn more about me at
    / premath
    Olympiad Mathematical Question! | Learn Tips how to solve Olympiad Question without hassle and anxiety!
    Can you find area of the Triangle ABC? | (Inscribed Circle) | #math #maths | #geometry
    #TriangleArea #RightTriangle #Circle #TwoTangentsTheorem
    #PreMath #PreMath.com #MathOlympics #HowToThinkOutsideTheBox #ThinkOutsideTheBox #HowToThinkOutsideTheBox? #FillInTheBoxes #GeometryMath #Geometry #RightTriangles
    #OlympiadMathematicalQuestion #HowToSolveOlympiadQuestion #MathOlympiadQuestion #MathOlympiadQuestions #OlympiadQuestion #Olympiad #AlgebraReview #Algebra #Mathematics #Math #Maths #MathOlympiad #HarvardAdmissionQuestion
    #MathOlympiadPreparation #LearntipstosolveOlympiadMathQuestionfast #OlympiadMathematicsCompetition #MathOlympics #ExteriorAngleTheorem #PythagoreanTheorem #IsoscelesTriangles #AreaOfTriangleFormula #AuxiliaryLines
    #blackpenredpen #MathOlympiadTraining #Olympiad Question #GeometrySkills #GeometryFormulas #AreaOfTriangles #CompetitiveExams #CompetitiveExam
    #MathematicalOlympiad #OlympiadMathematics #LinearFunction #TrigonometricRatios
    How to solve Olympiad Mathematical Question
    How to prepare for Math Olympiad
    How to Solve Olympiad Question
    How to Solve international math olympiad questions
    international math olympiad questions and solutions
    international math olympiad questions and answers
    olympiad mathematics competition
    blackpenredpen
    math olympics
    olympiad exam
    olympiad exam sample papers
    math olympiad sample questions
    math olympiada
    British Math Olympiad
    olympics math
    olympics mathematics
    olympics math activities
    olympics math competition
    Math Olympiad Training
    How to win the International Math Olympiad | Po-Shen Loh and Lex Fridman
    Po-Shen Loh and Lex Fridman
    Number Theory
    There is a ridiculously easy way to solve this Olympiad qualifier problem
    This U.S. Olympiad Coach Has a Unique Approach to Math
    The Map of Mathematics
    mathcounts
    math at work
    Pre Math
    Olympiad Mathematics
    Olympiad Question
    Find Area of the Shaded Triangle
    Geometry
    Geometry math
    Geometry skills
    Right triangles
    Exterior Angle Theorem
    pythagorean theorem
    Isosceles Triangles
    Area of the Triangle Formula
    Competitive exams
    Competitive exam
    Find Area of the Triangle without Trigonometry
    Find Area of the Triangle
    Auxiliary lines method
    Pythagorean Theorem
    Square
    Diagonal
    Congruent Triangles
    coolmath
    my maths
    mathpapa
    mymaths
    cymath
    sumdog
    multiplication
    ixl math
    deltamath
    reflex math
    math genie
    math way
    math for fun
    Subscribe Now as the ultimate shots of Math doses are on their way to fill your minds with the knowledge and wisdom once again.

Комментарии • 32

  • @ramanivenkata3161
    @ramanivenkata3161 8 месяцев назад +5

    Very well explained.
    I can say you are an expert in Analytical Geometry.

    • @PreMath
      @PreMath  8 месяцев назад +1

      So nice of you Ramani dear 🌹
      Thanks for the feedback ❤️

  • @giuseppemalaguti435
    @giuseppemalaguti435 8 месяцев назад +2

    (r+a)^2+(r+10)^2=(a+10)^2...r=1...1+2a+121=20a+100..22=18a ..a=11/9....Ablue=11(1+11/9)/2=110/9

  • @Mediterranean81
    @Mediterranean81 8 месяцев назад +1

    area of triangle = rs= 1*s=s
    pythagorean theorem
    (x+1)^2+11^2=(10+x)^2
    x^2+2x+1+121=100+200x+x^2
    2x+22=200x
    22=198x
    1/9=x
    semi perimeter :
    (x+1+11+x+10)/2=(2x+22)/2=x+11
    rs= 1(1/9+11)
    11+99/9
    = 110/9

  • @himo3485
    @himo3485 8 месяцев назад +1

    r*r*π=π(cm^2) r=1
    DC=DF=10 AD=AE=x
    (x+1)^2+(1+10)^2=(x+10)^2
    x^2+2x+1+121=x^2+20x+100
    18x=22 x=11/9
    area of the Blue triangle :
    (11/9+1)*11*1/2=110/9cm^2

  • @phungpham1725
    @phungpham1725 8 месяцев назад +1

    Alternative solution:
    Let A and r be the area of ABC and the radius of the circle.
    Just label AD=AE= m and DC= CF= n
    A= area of the square BEOF + area of AEOD + area of ODCF = sqr+ rm+rn
    And A= 1/2 AB.BC= 1/2 (r+m)(r+n)= 1/2 (sqr+rm+rn+mn)= 1/2(A+mn)
    --> A=mn
    Because r= 1 so, 1/2 ( m+1)(1+10) = 10 m --> m= 11/9
    Area= mn= 110/9 sq cm

  • @jamestalbott4499
    @jamestalbott4499 8 месяцев назад +1

    Thank you!

  • @prashant245100
    @prashant245100 8 месяцев назад +1

    Nice

  • @marcgriselhubert3915
    @marcgriselhubert3915 8 месяцев назад +1

    EB = BF = 1 = radius of the circle. Let's now note AE = AD = x. In triangle ABC the Pythagorean theorem gives: (x +1)^2 + 11^2 = (x +10)^2,
    or x^2 + 2.x +1 + 121 = x^2 + 20.x +100, or 18.x = 22, or x = 22/18 = 11/9. Then AB = 20/9. The area of triangle ABC = (1/2).AB.BC = (1/2).(20/9).11 = 110/9

  • @GiorgioCensi-u3j
    @GiorgioCensi-u3j 8 месяцев назад +1

    The area of a right triangle is the product of the two segments in which the hypotenuse is divided by the tangency point of the inscribed circle. In our case, area of ABC = AD * DC

    • @LuisdeBritoCamacho
      @LuisdeBritoCamacho 8 месяцев назад

      Well Done!!
      ABC Area = DC * AD = 10 * 11/9 = 110/9 Square Units.

  • @honestadministrator
    @honestadministrator 8 месяцев назад

    b * c /2
    = ( b + c + √ ( b^2 + c^2)) /2
    Herein
    (b + c + √ ( b^2 + c^2))
    * ( b + c - √ ( b^2 + c^2))
    = ( b + c) ^2 - ( b^2 + c^2)
    = 2 b c
    Hereby
    ( b + c) - √( b^2 + c^2) = 2
    Given √( b^2 + c^2) = 10
    Hereby b + c = 12
    2 b c = ( b + c) ^2 - (b^2 + c^2)
    = 144 - 100
    b c = 11
    Area of ∆ A B C = b c /2 = 11/2

  • @devondevon4366
    @devondevon4366 8 месяцев назад

    12.22
    radius =1
    Hence, the base =11
    and the height = p+1
    and the hypotenuse= 10 + p
    Let's employ Pythagorean Theorem
    ( p+1)^2 + 11^2 = (p+10)^2
    p^2 + 2p +1 + 121= p^2 + 20p + 100
    2p + 122= 20p + 100
    22 = 18p
    1.222 = p
    Hence, base = 12.2222
    height = 2.2222
    Area =12.22222

  • @raya.pawley3563
    @raya.pawley3563 8 месяцев назад

    Thank you

  • @himadrikhanra7463
    @himadrikhanra7463 8 месяцев назад

    R in=1
    Delta/s=1
    10-10,x-x,y-y
    20+ 2x + 2y
    2( 10 +x+y)
    Have a formula to find radius of excircle, unable to remember now
    ...there after we can get value of perimeter...after delta blue= 1 × semi perimeter...

  • @jimlocke9320
    @jimlocke9320 8 месяцев назад

    Solution using the tangent double angle formula. At about 4:35, construct OC to form ΔCOF and add OD to form ΔCOD. Note that ΔCOF and ΔCOD are congruent by side - angle - side (OF = OD = radius,

  • @quigonkenny
    @quigonkenny 8 месяцев назад

    Circle O:
    A = πr²
    π = πr²
    r² = 1
    r = 1
    FC and DC are tangents of circle O that intersect at C, so FC = DC = 10. AE and AD are tangents of circle O that intersect at A, so AE = AD = x.
    AB and BC are tangent to circle O at E and F respectively, so ∠BFO = ∠OEB = 90°. As ∠EBF = 90° as well and OE = OF = 1, then ∠FOE must equal 90° and BFOE is a square with side length 1.
    Triangle ∆ABC:
    AB² + BC² = CA²
    (x+1)² + 11² = (x+10)²
    x² + 2x + 1 + 121 = x² + 20x + 100
    18x = 22
    x = 22/18 = 11/9
    Area = bh/2 = 11(20/9)/2 = 110/9 cm²

  • @santiagoarosam430
    @santiagoarosam430 8 месяцев назад

    CD=CF=10 ; AD=AE=t ; EB=BF=OD=OE=OF=Radio =r=1→ Área ABC =(t*1)+(1*1)+(10*1) = (1+10)*(t+1)/2→ t=11/9→ AB=20/9 ; BC=11→ Área ABC=(20/9)*11/2=110/9 =12,2222.......ud²
    Gracias y un saludo cordial.

  • @grink_42man
    @grink_42man 8 месяцев назад

    The area of the circle is pi*r^2. pi*r^2=pi; r^2=1; r=±1. The radius of the circle can only be positive, so r=1.
    AB, BC and AC are the tangents of the circle, so OE=OF=OD=r are the perpendiculars of the triangle's sides, where E, F and D are the points of intersection.
    Let's build a square EOFB. It's the square, because OE=OF=1 and the angle EBF=90 degrees. BO is the diagonal of the square; BO=sqrt(1+1)=sqrt(2).
    Let's build a line segment BD. BD is the altitude of the ABC for the hypotenuse AC. BD=BO+OD=sqrt(2)+1. The area of triangle is bh/2, where h is the altitude and b is the side that's perpendicular for the altitude. The area of ABC=(sqrt(2)+1)*10/2=5sqrt(2)+1 cm^2

  • @AmirgabYT2185
    @AmirgabYT2185 8 месяцев назад +2

    S=110/9≈12,22 cm²

  • @egillandersson1780
    @egillandersson1780 8 месяцев назад

    I find 11 ! With the sides of the triangle a=6+sqrt(14) and b=6-sqrt(14) : ab=22 (A=ab/2=11) and a^2+b^2=100=10^2

    • @egillandersson1780
      @egillandersson1780 8 месяцев назад

      Ok ! I see my mistake : the length 10 is DC, not AC. The diagram is a bit confusing

  • @prossvay8744
    @prossvay8744 8 месяцев назад

    Area of circle=π=πr^2
    so r=1cm
    CD and CF are tangent
    So CD=CF=10cm
    BEOF is square
    BE=EO=OF=FB=1cm
    BC=BF+CF=1+10=11cm
    Let AB=x
    AE=AP=x-1
    AC=x-1+10=x+9
    x^2+11^2=(x+9)^2
    x^2+121=x^2+18x+81
    18x=121-81=40
    x=40/18=20/9cm
    Area of the Blue triangle=1/2(20/9)(11)=110/9cm^2=12.22cm^2.❤❤❤

  • @unknownidentity2846
    @unknownidentity2846 8 месяцев назад +1

    Let's find the area:
    .
    ..
    ...
    ....
    .....
    First of all we calculate the radius R of the inscribed circle:
    A(circle) = πR²
    πcm² = πR²
    1cm² = R²
    ⇒ R = 1cm
    All three sides of the triangle are tangents to the circle. Therefore we can conclude:
    ∠ADO = ∠CDO = 90°
    ∠AEO = ∠BEO = 90°
    ∠BFO = ∠CFO = 90°
    AD = AE
    BE = BF
    CD = CF (= 10)
    The area of the triangle can be calculated from its perimeter and the radius of the inscribed circle:
    A(ABC) = P(ABC)*R/2
    Since ABC is a right triangle, its area can also be calculated in the following way:
    A(ABC) = (1/2)*AB*BC
    Now we can conclude:
    P(ABC) = AB + AC + BC = AE + BE + AD + CD + BF + CF = AD + R + AD + CD + R + CD = 2*(AD + CD + R)
    P(ABC)*R/2 = (1/2)*AB*BC
    P(ABC)*R = AB*BC
    2*(AD + CD + R)*R = (AE + BE)*(BF + CF)
    2*(AD + CD + R)*R = (AD + R)*(R + CD)
    2*(AD + 10cm + 1cm)*(1cm) = (AD + 1cm)*(1cm + 10cm)
    2*(AD + 11cm) = (AD + 1cm)*11
    2*AD + 22cm = 11*AD + 11cm
    11cm = 9*AD
    ⇒ AD = (11/9)cm
    P(ABC) = 2*(AD + CD + R) = 2*(11/9 + 10 + 1)cm = 2*(11/9 + 11)cm = (220/9)cm
    A(ABC) = P(ABC)*R/2 = [(220/9)cm]*(1cm)/2 = (110/9)cm²
    AB = AE + BE = AD + R = (11/9 + 1)cm = (20/9)cm
    BC = BF + CF = R + CD = (10 + 1)cm = 11cm
    A(ABC) = (1/2)*AB*BC = (1/2)*[(20/9)cm]*(11cm) = (110/9)cm² ✓
    Best regards from Germany

  • @davidzagorski9756
    @davidzagorski9756 8 месяцев назад

    No need for the Pythagorean Theorem. Solve for BE as shown. Now you have K=rS, so the area of the triangle equals the radius of the inscribed circle multiplied by the semiperimeter. And take it from there.

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 8 месяцев назад

    STEP-BY-STEP RESOLUTION :
    1) Radius of Pink Circle is R = 1
    2) CD = CF = 10
    3) OC = sqrt(101)
    4) BF = BE = 1
    5) BC = BF + CF ; BC = 1 + 10 ; BC = 11
    5) AE = AD = X
    6) AC = 10 + X
    7) AB = 1 + X
    8) BC^2 = AC^2 - AB^2
    9) 11^2 = (10 + X)^2 - (1 + X)^2
    10) 121 = 100 + 20X + X^2 - 1 - 2X - X^2
    11) 121 - 100 + 1 = 20X - 2X
    12) 22 = 18X
    13) X = 22/18
    14) X = 11/9
    15) AE = AD = 11/9
    16) AB = 1 + 11/9 ; AB = 20/9
    17) BC = 11
    18) AREA = (20/9) * 11) / 2
    19) AREA = 220/18
    20) AREA = 110/9 Square Cm
    21) ANSWER : The Area of Blue Triangle is equal to 110/9 Square Cm or approx. 12, 22(2) Square Cm.

  • @wackojacko3962
    @wackojacko3962 8 месяцев назад

    Ooooo! 😂

  • @vivificateurveridique1420
    @vivificateurveridique1420 8 месяцев назад

    if BF=1 how FC=10? you shoud put in the exercice FC about 5, that seems more logical than 10.

  • @sergeyvinns931
    @sergeyvinns931 8 месяцев назад

    The redius the inscribed circie is 1, CD=CF=10, BC=CF+r=11, BD^2=BC^2-CD^2=21, BC=\/21, triangles BCD and BAD are similar, BD/AB=10/11, 10AB=11\/21, АВ=11\/21/10. Areq of the triqngle ABC = AB*BC/2 = 11*11\/21/10*2=
    =121\/21/20=27,7245829544...