solving the differential equation y''+y=tan(t) by variation of parameters

Поделиться
HTML-код
  • Опубликовано: 14 янв 2025

Комментарии • 115

  • @raotalha6076
    @raotalha6076 7 лет назад +29

    my teacher solved it in more easy way

    • @therodeo4372
      @therodeo4372 7 лет назад +157

      DONT DISRESPECT THE MAN HES FUCKING AMAZING
      KEEP ON DOING YOUR THING BPRP

    • @koober_
      @koober_ 7 лет назад +23

      Yes, there are easier ways, such as just using the formula, but this way (as well as the method involving matrices) kind of gives you some background on how to derive the formulas.

    • @poojarani6046
      @poojarani6046 6 лет назад +25

      So why are you watching dis....
      Go n study to your teacher......dont show off man!

    • @ThilebanTheEngineer
      @ThilebanTheEngineer 6 лет назад

      Watch my channel for more easy way..

    • @Ethan-rw7ub
      @Ethan-rw7ub 6 лет назад +9

      Hey guys chill alright? It's completely normal that there are faster ways to solve a question, don't get so butthurt.

  • @tagekumarpaul7474
    @tagekumarpaul7474 4 года назад +19

    For anyone watching, after he gets the system of equations that he has to solve, you can use cramer's rule to get v1' and v2' and then integrate to get v1 and v2. It's a slightly faster way. Great video though. I love this guys channel.

  • @dessa8242
    @dessa8242 3 года назад +1

    you are a lifesaver guy!!! I have been hovering multiple videos about this topic, none of the videos had any clear and confidential explanation, rather than yours. they just be there for the purpose of collecting subscriptions.

  • @KeyMan137
    @KeyMan137 7 лет назад +25

    For those who want the final solution: y = C1 cos(t) + C2 sin(t) - cos(t) ln|sec(t) + tan(t)|

  • @blackpenredpen
    @blackpenredpen  7 лет назад +11

    y"+y=tan(t)

    • @dyer308
      @dyer308 7 лет назад +1

      I love all your videos!

    • @batubulgur
      @batubulgur 7 лет назад +1

      blackpenredpen blue pen? there is something wrong with this video... :)

    • @blackpenredpen
      @blackpenredpen  7 лет назад +1

      raees khan thanks!!

  • @ssdass4303
    @ssdass4303 Год назад +2

    why dont u just plug in V2' which u just solved

  • @jaimeduncan6167
    @jaimeduncan6167 7 лет назад +7

    Excellent work as always. By the way it was easier to substitute v2 derivative instead in the first equation, exploiting the zero.

  • @helldogforever
    @helldogforever 6 лет назад +2

    I understand this now with 1000% clarity.

  • @reubenwilliammpembe667
    @reubenwilliammpembe667 6 лет назад +3

    you are the best!!!!
    #RespectFromSouthAfrica

  • @jackkalver4644
    @jackkalver4644 Год назад +1

    Is variation of parameters ever easier than linear integration? Here’s the same problem solved directly:
    y”+y=tan t
    y”*cos t+y*cos t=sin t
    y’*cos t+y*sin t=C1-cos t
    y’*sec t+y*tan t*sec t=C1*sec^2 t-sec t
    y*sec t=C1*tan t-ln|sec t+tan t|+C2
    y=C1*sin t-cos t*ln|sec t+tan t|+C2*cos t

  • @kindofhungry
    @kindofhungry 7 лет назад +7

    Can you do one using wronskians and integral? Ex: u_1 = int((y_2(t)*g(t))/W(y_1,y_2))

  • @jevcampbell2301
    @jevcampbell2301 4 года назад +3

    you my friend deserve a medal. You will reach 1 mil subs

    • @GSHAPIROY
      @GSHAPIROY Год назад

      It happened, on November 11, 2022.

  • @iindifferent
    @iindifferent 7 лет назад +2

    Excellent video! Thank you so much.

  • @osunrinadebukola6082
    @osunrinadebukola6082 8 месяцев назад +1

    Very helpful. God bless you

  • @therodeo4372
    @therodeo4372 7 лет назад +1

    THANK YOU!!!! PLEASE KEEP IT COMING I HAVE CALC 3 IN THE FALL AND LINEAR ALGEBRA IN THE SPRING

  • @bird9
    @bird9 3 года назад

    THANK YOU BlackPenRP

  • @Physticuffs
    @Physticuffs 10 месяцев назад

    Finally i understand this. Thank you!

  • @eess2396
    @eess2396 7 месяцев назад

    太谢谢你了,我考前复习正好看到这个问题不懂,你这个办法也挺好的,用包含矩阵的积分公式似乎对我来说难以记忆,如果真忘了那我只好推导了哈哈老师说我们时间很够。

  • @hmjawad087
    @hmjawad087 4 года назад +1

    Just Amazing Brother..!!!

  • @Cyrowiss0
    @Cyrowiss0 5 дней назад

    Excellent!

  • @johansvensson830
    @johansvensson830 6 лет назад +1

    Thank you so much!

  • @cassiechandler4314
    @cassiechandler4314 7 лет назад +1

    Very Helpful

  • @Ggon636
    @Ggon636 4 года назад +5

    After finding V'2 why can we not plug it into one of the equations to acquire V'1??

    • @aritro3
      @aritro3 4 года назад +1

      you can

    • @tomatrix7525
      @tomatrix7525 4 года назад +1

      Yep, you can get it many ways. Whatever floats your equation bro

  • @Salamanca-joro
    @Salamanca-joro Месяц назад

    so now i will have to go back and review how to integerate trig functions

  • @raptokvortex
    @raptokvortex 7 лет назад +1

    Cool. We've only learnt how to solve linear second order differential equations by inspection so far.

  • @hanwadou1777
    @hanwadou1777 7 лет назад

    Good job I love it so much

  • @sirius.aeternus
    @sirius.aeternus 4 года назад +1

    he makes me laugh when he laughs lol

  • @borg972
    @borg972 6 лет назад +2

    Thanks! would love to see more examples for variation of parameters!

  • @valentinlishkov9540
    @valentinlishkov9540 8 месяцев назад

    Issue:
    What is a differential of an irrational argument?
    Let a= some rational approximation, and A be the irrational number itself (if that makes sense).
    Then A - a > dA and there is no way a + dA > A

  • @mkt92z
    @mkt92z 5 лет назад +1

    Is it easier to use wronskian couple with cramers rule?

  • @joyceadeniyi9005
    @joyceadeniyi9005 6 лет назад

    Thanks so much

  • @tobechukwublessed4274
    @tobechukwublessed4274 Год назад

    Thanks you

  • @jameshenner5831
    @jameshenner5831 6 лет назад +2

    plotting this solution reveals a weirdly lumpy periodic function with the period of 2*pi. The lumpiness is kind of interesting if the coefficients of sine and cosine are relatively small. picture: i.imgur.com/Pnu2Yua.jpg

  • @fernandogallardo3477
    @fernandogallardo3477 6 лет назад +15

    I have to do it via wronskian

    • @skepticmoderate5790
      @skepticmoderate5790 4 года назад

      Have to? That's the easier way. I always prefer a formula.

    • @benedictmaddara9248
      @benedictmaddara9248 4 года назад

      This is the safest solution possible. So, why not? haha

  • @charlesrothauser1328
    @charlesrothauser1328 4 года назад

    Where is C from the particular solution in the final answer?

  • @susovanmanna8323
    @susovanmanna8323 3 года назад

    🙏🙏sir u r amazing

  • @tanyaradzwakufa8709
    @tanyaradzwakufa8709 3 года назад

    why not use the wroskian approach

  • @zainabalmusawi7749
    @zainabalmusawi7749 6 лет назад +2

    طريقة الحل جدا مفهومه شكرا

  • @sunnymanish5514
    @sunnymanish5514 Год назад

    6:18 - 6:22 was epic

  • @WilliamBlake-yj2yu
    @WilliamBlake-yj2yu 2 года назад

    is this still cauchy euler method applied?

  • @isaacdesantigoisaac1319
    @isaacdesantigoisaac1319 7 лет назад

    i love your videos

  • @gulaykeskin8647
    @gulaykeskin8647 7 лет назад

    thank you

  • @poojarani6046
    @poojarani6046 6 лет назад +1

    You and your methods are amazing and easily understandable also....

  • @jrcano1889
    @jrcano1889 6 лет назад

    Thank you, my teacher want us to do it this way and not the wronskian method

  • @carlmarionmanlapaz4697
    @carlmarionmanlapaz4697 5 лет назад +2

    hello there how to do that when i have more than 3 equations? are there techniques to quicken the solving?
    @blackpenredpen

  • @iradnuriel9087
    @iradnuriel9087 7 лет назад

    Hi blackpenredpen , I didn't realize why can I find the harmonic solution by solving a polinom? (sorry if my English is incorrect, I don't good in English)

  • @nhaminh5717
    @nhaminh5717 3 года назад

    What about y''+y'=tan(x)

  • @programmingpython584
    @programmingpython584 3 года назад

    I am not getting how he takes y1=cost and y2 = sint. Please explain that

  • @yarsak8067
    @yarsak8067 5 лет назад +1

    Great vid as always! By the way, would this method also work with higher order derivatives (f.ex. y''', y"" etc)? Thanks!

  • @Rundas69420
    @Rundas69420 7 лет назад

    We can all be happy that the original question is y"+y=tan(t) and not y"-y=tan(t).

  • @burningoyster
    @burningoyster 7 лет назад

    In what video do you explain the y_p equation?

  • @arkansh.h.1313
    @arkansh.h.1313 5 лет назад

    hi thnx a lot. And how about this diff. eq. y''+5y'+11=tan(x)?

  • @nurshafiqahjamaludin1702
    @nurshafiqahjamaludin1702 6 лет назад

    ive just got the y1 for the yh, how i can solve it???

  • @nurfitrah6126
    @nurfitrah6126 7 лет назад

    can you help me how to solve y''+y= sec (theta) tan (theta). im confused when it has (theta)

  • @taimooralibukhari
    @taimooralibukhari 6 лет назад

    if sin^2t+cos^2t=1 then v1'+v1=2v1'? isnt it?

  • @Kayy_SS
    @Kayy_SS 6 лет назад

    My equation is a 3rd order nonhomogeneous. How can I solve it ?

  • @yahiazakarialadhem9411
    @yahiazakarialadhem9411 5 лет назад

    thank's

  • @alwinpriven2400
    @alwinpriven2400 7 лет назад

    what's y'' is it the second derivative of y?

  • @rohansawai6534
    @rohansawai6534 4 года назад

    #RespectfromIndia

  • @ΘέκλαΧατζηκώστα
    @ΘέκλαΧατζηκώστα 6 лет назад

    y''+4y=cos(2x)

    • @yolcu8609
      @yolcu8609 6 лет назад +1

      You can use undetermined coefficient method

  • @BukhalovAV
    @BukhalovAV 7 лет назад

    Why there is no the coefficient C_3 at cos(t)*ln(abs(sec(t)+tan(t))) in the answer?

  • @GHOSTrex1324
    @GHOSTrex1324 4 года назад

    lit outro music

  • @begadanan2649
    @begadanan2649 Год назад

    just use wronskian instead and easier and workds

  • @JudeuCearense
    @JudeuCearense 5 лет назад

    Why y1' +y2' = f(t)/a is valid? Is there have any theorems?

    • @repvoo2399
      @repvoo2399 Год назад

      you can watch the previous video about the variation of parameters, introduction, and idea, in case you are still alive.

  • @Ocklepod
    @Ocklepod 7 лет назад

    Not sure if title of video is quotation marks or 2 of '

  • @comic4u001
    @comic4u001 5 лет назад

    Very helpfull. How Can i solve this equation please? y''-2y'-3y=3sinh(2x)-12cosh(2x)

    • @carultch
      @carultch Год назад

      Given:
      y" - 2*y' - 3*y = 3*sinh(2*x) - 12*cosh(2*x)
      For this example, I'd use the Laplace transform, and assign arbitrary initial conditions. This can also work using the method of undetermined coefficients, because sinh(2*x) and cosh(2*x) are both a linear combinations of e^(-2*x) and e^(2*x), so you can assume both of these as your ansatz of the particular solution for undetermined coefs.
      Let y(0) be u, and let y'(0) be v. Also let Y(s) = £{y(x)}
      £{y"} = s^2*Y(s) - v - u*s
      £{-2*y'} = -2*s*Y(s) + 2*u
      £{-3*y} = -3*Y(s)
      £{3*sinh(2*x))} = 6/(s^2 - 4)
      £{12*cosh(2*x))} = 12*s/(s^2 - 4)
      Thus:
      (s^2 - 2*s - 3)*Y(s) - v - u*s + 2*u = 6/(s^2 - 4) - 12*s/(s^2 - 4)
      Shuffle initial conditions to the right:
      (s^2 - 2*s - 3)*Y(s) = 6/(s^2 - 4) - 12*s/(s^2 - 4) + v + (s - 2)*u
      Change right side to common denominators:
      (s^2 - 2*s - 3)*Y(s) = (6 - 12*s + (u*s - 2*u + v)*(s^2 - 4))/(s^2 - 4)
      Isolate Y(s):
      Y(s) = (6 - 12*s + (u*s - 2*u + v)*(s^2 - 4))/((s^2 - 4)*(s^2 - 2*s - 3))
      Factor denominator and expand/gather numerator:
      Y(s) = (u*s^3 + (v - 2*u)*s^2 - (12 + 4*u)*s + 8 u - 4 v + 6)/((s - 2)*(s + 2)*(s + 1)*(s - 3))
      Partial fractions:
      Y(s) = A/(s - 3) + B/(s + 1) + C/(s - 2) + D/(s + 2)
      From experience, we know that the two solutions whose denominators are factors of the characteristic polynomial in front of Y(s), they will be the two solutions whose output depends on initial conditions. As such , C and D are the two coefficients that will be from the particular solution, and won't depend on initial conditions. Heaviside cover-up works great for finding them. So we might as well just leave A and B alone, as unknowns for the general solution.
      C = (u*2^3 + (v - 2*u)*2^2 - (4*u + 12)*2 + 8*u - 4*v + 6)/((2 +2)*(2 + 1)*(2 - 3)) = 3/2
      D = (u*(-2)^3 + (v - 2*u)*(-2)^2 - (4*u + 12)*(-2) + 8*u - 4*v + 6)/((4 + 4)*(4 + 1)*(4 - 3)) = -3/2
      Y(s) = A/(s - 3) + B/(s + 1) + 3/2/(s - 2) - 3/2/(s + 2)
      Take inverse Laplace:
      y(x) = A*e^(3*x) + B*e^(-x) + 3/2*e^(2*x) - 3/2*e^(-x)
      And we can consolidate our particular part of the solution as a single sinh:
      y(x) = A*e^(3*x) + B*e^(-x) + 3*sinh(2*x)

  • @saidinesrine3689
    @saidinesrine3689 5 лет назад

    what is the sect ???? THANKS

    • @carultch
      @carultch Год назад

      sec(t) = 1/cos(t)

  • @shanaraj6580
    @shanaraj6580 2 года назад

    👏🏽👏🏽👏🏽👏🏽👏🏽

  • @Malikasoy5828
    @Malikasoy5828 3 года назад

    한국인처럼 생겼군요 ...... 김태형 아시 잖아요

  • @husamrajeh179
    @husamrajeh179 6 лет назад

    You forgot to write y2v2 its sinx(-cosx)

  • @isharauditha4257
    @isharauditha4257 3 года назад

    how do you become this much smart

  • @husamrajeh179
    @husamrajeh179 6 лет назад

    At the end u forgot to ad y2u2

  • @daniell321
    @daniell321 6 лет назад

    taking this adv ODE in year 3 mechanical engineering, will take adv PDE next year hope u can cover the topics in adv PDE love

  • @dirtybee224
    @dirtybee224 7 лет назад +1

    My teacher makes use of matrix to make it look easier and faster.

  • @takudzwabveke2599
    @takudzwabveke2599 7 лет назад

    wakanyanya

  • @tobechukwublessed4274
    @tobechukwublessed4274 Год назад

    Cooll

  • @hecadream9717
    @hecadream9717 3 года назад

    uau

  • @slaywithkeke7129
    @slaywithkeke7129 3 года назад

    Thank you very much. Much appreciated.

  • @justin-ls5yc
    @justin-ls5yc 3 года назад

    thank you