Stanford University Entrance Exam | x^4−12x−5=0

Поделиться
HTML-код
  • Опубликовано: 20 янв 2025

Комментарии • 14

  • @ldeans5620
    @ldeans5620 2 месяца назад

    Awesome

    • @superacademy247
      @superacademy247  2 месяца назад

      Thanks for visiting my channel 🤩👏😎🙏

  • @9허공
    @9허공 4 месяца назад +5

    another method
    since there are no x^3 and x^2 terms in the given equation,
    let x^4 - 12x -5 = (x^2 + a/2)^2 - a(x + b/2)^2 = x^4 - abx + (a^2 - ab^2)/4
    => -ab = -12 & (a^2 - ab^2)/4 = -5
    => ab = 12 , a^2 - ab^2 = a^2 - b(ab) = a^2 - 12a = -20
    => a^2 - 12(12/a) + 20 = 0 => a^3 + 20a - 144 = (a-4)(a^2 + 4a + 36) = 0
    => a =4, b =3 => x^4 -12x -5 = (x^2 + 2)^2 - 4(x + 3/2)^2 = (x^2 + 2x + 5)(x^2 - 2x - 1) = 0
    => x = { -1 ± 2i, 1 ± √2 }

    • @superacademy247
      @superacademy247  4 месяца назад +5

      Thanks for your nice method. You've shed light 💡😍🔥🤩💕

  • @key_board_x
    @key_board_x 4 месяца назад +6

    x⁴ - 12x - 5 = 0 ← it would be interesting to have a perfect square → let's define x⁴ as the beginning of a square
    (x² + λ)² - 2x²λ - λ² - 12x - 5 = 0
    (x² + λ)² - [2x²λ + λ² + 12x + 5] = 0
    (x² + λ)² - [2x²λ + 12x + λ² + 5] = 0 ← memorize this equation
    2x²λ + 12x + λ² + 5 = 0 → if we want to have a square, Δ = 0 → let's define Δ
    Δ = (12)² - 4.[2λ.(λ² + 5)] → then Δ = 0
    144 - 4.[2λ.(λ² + 5)] = 0
    4.[2λ.(λ² + 5)] = 144
    2λ.(λ² + 5) = 36
    λ.(λ² + 5) = 18
    λ³ + 5λ - 18 = 0
    λ³ + (2λ² - 2λ²) + (9λ - 4λ) - 18 = 0
    λ³ + 2λ² - 2λ² + 9λ - 4λ - 18 = 0
    λ³ + 2λ² + 9λ - 2λ² - 4λ - 18 = 0
    (λ³ + 2λ² + 9λ) - (2λ² + 4λ + 18) = 0
    λ.(λ² + 2λ + 9) - 2.(λ² + 2λ + 9) = 0
    (λ² + 2λ + 9).(λ - 2) = 0
    First case: (λ² + 2λ + 9) = 0
    λ² + 2λ + 9 = 0
    λ = (2)² - (4 - 9) = 4 - 36 = - 32 ← no real solution, because negative
    Second case (λ - 2) = 0
    λ - 2 = 0
    λ = 2
    Recall the memorized equation
    (x² + λ)² - [2x²λ + 12x + λ² + 5] = 0 → now, we know that λ = 2 to get a perfect square
    (x² + 2)² - [4x² + 12x + 4 + 5] = 0
    (x² + 2)² - [4x² + 12x + 9] = 0
    (x² + 2)² - (2x + 3)² = 0 → recall: a² - b² = (a + b).(a - b)
    [(x² + 2) + (2x + 3)].[(x² + 2) - (2x + 3)] = 0
    [x² + 2 + 2x + 3].[x² + 2 - 2x - 3] = 0
    [x² + 2x + 5].[x² - 2x - 1] = 0
    First case: [x² + 2x + 5] = 0
    x² + 2x + 5 = 0
    Δ = 2² - (4 * 5) = 4 - 20 = - 16 = 16i²
    x = (- 2 ± 4i)/2
    → x = - 1 ± 2i
    Second case: [x² - 2x - 1] = 0
    x² - 2x - 1 = 0
    Δ = (- 2)² - (4 * - 1) = 4 + 4 = 8
    x = (2 ± √8)/2
    x = (2 ± 2√2)/2
    → x = 1 ± √2

  • @lananhnguyen5899
    @lananhnguyen5899 Месяц назад +1

    stanford university entrance exam and a secondary student is doing it right now

    • @superacademy247
      @superacademy247  Месяц назад

      Thanks for your feedback. I'm glad you found it helpful 🙏🤩🤩🙏😎💕

  • @MrRichie444
    @MrRichie444 3 месяца назад

    z^4 - 12z - 5 = 0 : First of all, this equation is unsolvable using the normal method, so we might need to break the z^4 down, so we get z^4 = (z^2 + 1)^2 -1-2z^2 = z^4 + 1 + 2z^2 - 1 - 2z^2 = z^4 ||rewriting the equation, we get || (z^2 + 1)^2 - 1 - 2z^2 - 12z - 5 = 0 || splitting the equation into two we get (z^2 + 1)^2 - 1 = 0 and 2z^2 + 12z + 5 = 0 ...Now the equation is solvable. I leave it to the kids to decompose it.

  • @ruany91719
    @ruany91719 3 месяца назад

    Pardon me, how to know that its delta = 0 ? at 4:10 of this video

    • @superacademy247
      @superacademy247  3 месяца назад +1

      It's a brute force rule to make the equation a perfect square

    • @sergeilyubski852
      @sergeilyubski852 Месяц назад

      agree it is strange .