Dealing with Missing Values in Machine Learning: Easy Explanation for Data Science Interviews

Поделиться
HTML-код
  • Опубликовано: 24 янв 2025

Комментарии • 15

  • @MrFromminsk
    @MrFromminsk Год назад

    The best video on handling missing values in DSs

  • @edwinsimjaya4541
    @edwinsimjaya4541 2 года назад +3

    Your explanation is very clear Emma, thank you so much!

    • @emma_ding
      @emma_ding  2 года назад

      Happy to help! Thanks for watching. 😊

  • @louisforlibertarian
    @louisforlibertarian 2 года назад +1

    Love the vid! Can't wait for more in this ML interview question series!

    • @emma_ding
      @emma_ding  2 года назад

      Thanks for following along, Louis! 💛

  • @ArtificiallyConcious
    @ArtificiallyConcious 11 месяцев назад

    Excellently explained!

  • @jameswright1848
    @jameswright1848 2 года назад

    Thanks Emma! Very clear, easy to understand and very helpful!

    • @emma_ding
      @emma_ding  2 года назад +1

      So glad to be of assistance, James! 😊

  • @tejasphirke3436
    @tejasphirke3436 2 года назад

    Wonderfully explained 😀

  • @SimbarasheWilliamMutyambizi
    @SimbarasheWilliamMutyambizi 9 месяцев назад

    Good explanation

  • @lisayang9256
    @lisayang9256 2 года назад

    👍 thank you

  • @chandansagar212
    @chandansagar212 2 года назад

    thanks !

  • @kelseyarthur6421
    @kelseyarthur6421 2 года назад

    What machine learning algorithms would you use to try to fill in missing values?