Creating Snowflake SnowPipe using Azure: Effortless Real-time Data Ingestion

Поделиться
HTML-код
  • Опубликовано: 25 дек 2024

Комментарии • 7

  • @ashok6644
    @ashok6644 8 месяцев назад +1

    good one

  • @mohammedvahid5099
    @mohammedvahid5099 8 месяцев назад

    Amazing pls work on more azure to and also how to SCD TYPE 1 AND SCD 2 TWO ALSO BRO
    AFTR FINISHING STREAMS AND TASKS..AND I WANT TO SEE HOW U WORK ON QUERY OPTIMIZATION FOR QUERY PERFORMANCE TUNING UR SCENARIO BRO...THNKS UR WORKING AMAZING BRO

  • @mohammedvahid5099
    @mohammedvahid5099 7 месяцев назад +1

    BRO PLEASE PROVIDE orders dataset csv FILE for practice....where u get that csv file pleas give the link bro

    • @dataworldsolution
      @dataworldsolution  7 месяцев назад

      drive.google.com/drive/folders/1E0rGggx27gZdcfLeR0g5zpP1JqaSbli-?usp=sharing

    • @dataworldsolution
      @dataworldsolution  7 месяцев назад

      # python scripts to generate dataset
      --------------------------------------------------------
      import random
      import csv
      # Define the categories and subcategories
      categories = ["Electronics", "Books", "Clothing"]
      electronics_subcategories = ["Laptops", "Headphones", "Smartphones", "Accessories"]
      books_subcategories = ["Fiction", "Non-Fiction", "Science"]
      clothing_subcategories = ["T-Shirts", "Jeans", "Hoodies"]
      # Function to generate random data for a row
      def generate_row():
      order_id = "ORD" + str(random.randint(1, 10000)).zfill(4)
      amount = random.randint(50, 500)
      profit = int(amount * random.uniform(0.1, 0.3))
      quantity = random.randint(1, 5)
      category = random.choice(categories)
      if category == "Electronics":
      subcategory = random.choice(electronics_subcategories)
      elif category == "Books":
      subcategory = random.choice(books_subcategories)
      else:
      subcategory = random.choice(clothing_subcategories)
      return [order_id, amount, profit, quantity, category, subcategory]
      # Generate 1000 rows of data
      rows = []
      for _ in range(25):
      rows.append(generate_row())
      # Write the data to a CSV file
      with open("OrdersAzuredataset2.csv", "w", newline="") as csvfile:
      writer = csv.writer(csvfile)
      writer.writerow(["ORDER_ID", "AMOUNT", "PROFIT", "QUANTITY", "CATEGORY", "SUBCATEGORY"])
      writer.writerows(rows)
      print("Dataset created successfully!")