@12:57 Serre is being vastly appropriate in his relationship with Grothendieck with his correction at his colleague as to the nature of competition: Namely, this particular event of intellect is one of understanding: not competition. One is referred to Grothendieck’s relationship to this experience.
J'aime beaucoup cette anecdote que Serre rapporte souvent : les rapports des congrès Bourbaki se terminaient souvent par cette phrase un peu énigmatique : "et il faudra penser à remplacer les théorèmes faux par d'autres."
Je n'arrive pas à comprendre la réponse à 40:50: ""J'ai decidé de consacrer ma vie à demontrer ça."" "Je ?????." "D'accord. C'est une réponse." Est-ce que quelqu'un peut m'aider?
@12:53 Serre appears to be randomly against his colleague in the style of ‘Dance Moms’: I would suggest that he truly is referring to something sincerely terrifying in the culture of scientists en masse: Namely, that he specifically doesn’t do this kind of competition because the [Individuality of the scientist] Is found in a natural - not externally forced - invitation to certain kinds of theorems… to prove: for example. As was his experience with Reimann Roch. I don’t know if I would call the Right Hand Side a literally euler characteristic calculation ….. My personal interest in it - not His - is the concept of …. This begins in mathematics with the stochastic generating function used to count things in a discrete sense …. A vector formation, identified not in a literally defined vector space. Namely, merimorphisms are how electromagnetic charge is stored as data: this is the singularity or these are the singularities of a merimorphism. The root of a derivative of a merimorphism has a meaning that one ought to doubt…. In the case of Real (Reimannian, for the canonical ‘isomorphism’ with smooth complex analysis) Geometry, the Euler Characteristic for a 2-manifold is in relation to its genus, monovariately: Chi = 2 - 2g. The Reimann Roch theorem entertains non-geometric data additively synthesized with -1/2 times this quantity….. The real question is what does it mean to transform real geometry into complex geometry. Reimannian geometry is only the most obvious sense: namely: complex geometry proper does seem to imply that there is something fundmanetal about its algebra: namely, its algebraic closedness as a field, that opens up a relationship it has to the reals in ways that are other than the canonical bijection, and implied smooth maps. The Hirzebrcuh Reimann Roch is the statement of this: indeed the way to percieving the After one has seen the Gauss Bonnet, as a consequence of Green’s theorem in the plane and so forth….. attractiveness of calling this graph invariant - once proven to be a topological invariant - a characteristic class: Chi: Geometry. --> a global algebraic structure in discussion of global topology. With a comment on the geometry: how twisted it is, the existence of sections, or otherwise. It’s not necessarily the case, that anything metric - as actually IS the case in the subdivision theoretical real/ Reimannian geometry - has anything to do with the concept of an euler (poincare) characteristic given by Algebraic Topology: which is a field devoted to exactly constructing maps that this one quantity represents in spirit, alone. This is the Hirzebruch Reimann Roch theorem. The Grothendieck Reimann Roch is a production of the Geometry of this particular value: 2- 2g. Which is (1) first known as a subdivision constant, (2) second, as a topological invariant (3) according to GRR: a topological invariant along with there existing knowledge of the Geometry Put into this very particular number: 2 for the sphere, and 0 for the torus: one could state before appreciation of the recontextualization - by - definition. It’s a Reimann-Hurwitz formula for this HRR interpretation of this constant: in the sense of mathematically equating the Euler Poincare characteristic of two geometries , through transformation. In the Reimannian case of Reimann Hurwitz , the transformation is seen demonstratively. Grothendieck demonstrates only the existence such a map providing a relationship of equality between these two statements of topologie. Global topologie: this is the euler poincare characteristic of the data (X, V contained in TX) for a smooth complex manifold X. Under the hood of HRR: complex, if something other than Reimannian geometry, is the natural definition of this constant. I don’t necessarily know exactly what he means by ‘Reimann Roch IS an euler (poincare) characteristic calculation’
@28:10 Can Jean-Pierre Serre comment on what Cohomologie means to him. The concept of a function space holds archetypal significance. A Bird Flying above all Others Is a function. In the sense of Riemann Roch, it is posed as if to say that The implied relationship between the Divisor-Data and the function spaces these two pieces of data define: has a meaning. There’s nothing natural about this kind of synthesis: that could be understood as part of the impetus for exploring the ring theory, especially to hold this theorem under the fire of the rank nullity theorem, in exploration of structures that can be called the same: Is that the same concept as Jean Pierre Serre’s ‘canonical isomorphisms’……? Coherent Algebraic Sheaves.
On aimerait le savoir mais il ne le dira pas, il faudrait déjà regarder la liste des participants à ce colloque au cirm car il désigne sans ambiguïté quelqu'un présent à ce colloque. Dans le même ordre d idée, à quel théorème fait il allusion à 49'35" ?
La réponse est facile, dans la description de la vidéo il y a un lien vers la liste des participants au colloque, il n y a pas claire voisin, mais il y a Fesenko qui est bien connu pour cela, donc on a la réponse mais ce n est pas un scoop !
@@alexandretemkine7866: il en parle encore par la suite, il s'agit certainement de la classification des groupes simples finis. Probablement pense t-il, vu qu'il indique que la publication n'est point terminee, à la version "courte" entreprise à partir de 1994.
Je pense qu'on peut parfaitement ressentir quelque chose, sans savoir bien l'expliquer. Vraisemblablement, Jean-Pierre Serre ressent que certaines choses sont belles et que d'autres ne le sont pas, sans pouvoir donner de définition précise. Et puis il ne faut pas oublier (il en parle d'ailleurs) cet esprit bourbakiste qui consiste à attaquer fermement et sans vergogne, voire détruire, les maths des autres, car c'est ainsi qu'on avance. Ce ne veut pas dire qu'on attaque la personne, mais sur ce qu'elle fait il ne faut jamais se contenir parce que sinon on passera à côté de choses peut-être importantes. C'est un état d'esprit, il est très contestable. En tout cas il me semble que c'est celui de Serre.
That’s canonical: the beauty implied by femininity as it exists on women - there is an archetypal awkwardness associated to commenting on one’s own beauty as it exists in greater magnitude than one’s peers. This principle would most sensibly translate to the mathematics of a mathematician.
Les feuilles bien mystérieuses , car il enseigna toujours note, que le Professeur Serre tourne et retourne sans cesse , pose, reprend et repose de nouveau pendant l' entretien , contenaient -elles son testament scientifique qu'il fut empêché de délivrer par les deux intervenants ?
@12:57
Serre is being vastly appropriate in his relationship with Grothendieck with his correction at his colleague as to the nature of competition:
Namely, this particular event of intellect is one of understanding: not competition.
One is referred to Grothendieck’s relationship to this experience.
J'aime beaucoup cette anecdote que Serre rapporte souvent : les rapports des congrès Bourbaki se terminaient souvent par cette phrase un peu énigmatique : "et il faudra penser à remplacer les théorèmes faux par d'autres."
Médaille FIELDS 1954*
Je n'arrive pas à comprendre la réponse à 40:50: ""J'ai decidé de consacrer ma vie à demontrer ça."" "Je ?????." "D'accord. C'est une réponse." Est-ce que quelqu'un peut m'aider?
"Je l'engueulerais"
Merci bien!
kamoulox
"je rigolerais" , jp serre dans toute son humilité
serre ❤
@12:53
Serre appears to be randomly against his colleague in the style of ‘Dance Moms’:
I would suggest that he truly is referring to something sincerely terrifying in the culture of scientists en masse:
Namely, that he specifically doesn’t do this kind of competition because the
[Individuality of the scientist]
Is found in a natural - not externally forced - invitation to certain kinds of theorems… to prove: for example.
As was his experience with Reimann Roch.
I don’t know if I would call the Right Hand Side a literally euler characteristic calculation …..
My personal interest in it - not His - is the concept of …. This begins in mathematics with the stochastic generating function used to count things in a discrete sense …. A vector formation, identified not in a literally defined vector space.
Namely, merimorphisms are how electromagnetic charge is stored as data: this is the singularity or these are the singularities of a merimorphism.
The root of a derivative of a merimorphism has a meaning that one ought to doubt….
In the case of Real (Reimannian, for the canonical ‘isomorphism’ with smooth complex analysis)
Geometry, the Euler Characteristic for a 2-manifold is in relation to its genus, monovariately:
Chi = 2 - 2g.
The Reimann Roch theorem entertains non-geometric data additively synthesized with
-1/2 times this quantity…..
The real question is what does it mean to transform real geometry into complex geometry.
Reimannian geometry is only the most obvious sense: namely: complex geometry proper does seem to imply that there is something fundmanetal about its algebra: namely, its algebraic closedness as a field, that opens up a relationship it has to the reals in ways that are other than the canonical bijection, and implied smooth maps.
The Hirzebrcuh Reimann Roch is the statement of this: indeed the way to percieving the
After one has seen the Gauss Bonnet, as a consequence of Green’s theorem in the plane and so forth…..
attractiveness of calling this graph invariant - once proven to be a topological invariant - a characteristic class:
Chi: Geometry. --> a global algebraic structure in discussion of global topology.
With a comment on the geometry: how twisted it is, the existence of sections, or otherwise.
It’s not necessarily the case, that anything metric - as actually IS the case in the subdivision theoretical real/ Reimannian geometry - has anything to do with the concept of an euler (poincare) characteristic given by
Algebraic Topology: which is a field devoted to exactly constructing maps that this one quantity represents in spirit, alone.
This is the Hirzebruch Reimann Roch theorem.
The Grothendieck Reimann Roch is a production of the
Geometry of this particular value: 2- 2g.
Which is
(1) first known as a subdivision constant,
(2) second, as a topological invariant
(3) according to GRR: a topological invariant along with there existing knowledge of the
Geometry
Put into this very particular number: 2 for the sphere, and 0 for the torus: one could state before appreciation of the recontextualization - by - definition.
It’s a Reimann-Hurwitz formula for this HRR interpretation of this constant: in the sense of mathematically equating the Euler Poincare characteristic of two geometries , through transformation.
In the Reimannian case of Reimann Hurwitz , the transformation is seen demonstratively.
Grothendieck demonstrates only the existence such a map providing a relationship of equality between these two statements of topologie. Global topologie: this is the euler poincare characteristic of the data
(X, V contained in TX) for a smooth complex manifold X.
Under the hood of HRR: complex, if something other than Reimannian geometry, is the natural definition of this constant.
I don’t necessarily know exactly what he means by
‘Reimann Roch IS an euler (poincare) characteristic calculation’
@28:10
Can Jean-Pierre Serre comment on what Cohomologie means to him.
The concept of a function space holds archetypal significance.
A Bird Flying above all Others
Is a function.
In the sense of Riemann Roch,
it is posed as if to say that
The implied relationship between the Divisor-Data and the function spaces these two pieces of data define: has a meaning.
There’s nothing natural about this kind of synthesis: that could be understood as part of the impetus for exploring the ring theory, especially to hold this theorem under the fire of the rank nullity theorem, in exploration of structures that can be called the same:
Is that the same concept as Jean Pierre Serre’s ‘canonical isomorphisms’……?
Coherent Algebraic Sheaves.
Serre fait allusion à qui à 44:32 ??
Peut être Claire?
On aimerait le savoir mais il ne le dira pas, il faudrait déjà regarder la liste des participants à ce colloque au cirm car il désigne sans ambiguïté quelqu'un présent à ce colloque.
Dans le même ordre d idée, à quel théorème fait il allusion à 49'35" ?
La réponse est facile, dans la description de la vidéo il y a un lien vers la liste des participants au colloque, il n y a pas claire voisin, mais il y a Fesenko qui est bien connu pour cela, donc on a la réponse mais ce n est pas un scoop !
Par contre je veux toujours bien une réponse à ma question sur le théorème évoqué à 49'35" environ
@@alexandretemkine7866: il en parle encore par la suite, il s'agit certainement de la classification des groupes simples finis. Probablement pense t-il, vu qu'il indique que la publication n'est point terminee, à la version "courte" entreprise à partir de 1994.
M. Serre, médaillé FIELDS 1954, pas 1953 !
Déjà corrigé dans la description il y a quelques années 👍
J'ai trouvé J.-P. Serre un peu heurté, ou peu conciliant avec son confrère mathématicien.
J aime bien ecouter Jean-Pierre Serre il est tres fort pourtant il a un esprit relache et humble. Il est mon prefere en France apres Poincarre.
Oui c’est la même génération Serre et Poincaré. A quelques années près, ils ont le même âge....
@@fredericpoudevigne5798Hahahahaha.
Pour quelqu’un qui passe son temps à juger de la beauté des maths des autres, il est bien incapable d’expliquer cette beauté (en fin d’entretien).
Je pense qu'on peut parfaitement ressentir quelque chose, sans savoir bien l'expliquer. Vraisemblablement, Jean-Pierre Serre ressent que certaines choses sont belles et que d'autres ne le sont pas, sans pouvoir donner de définition précise.
Et puis il ne faut pas oublier (il en parle d'ailleurs) cet esprit bourbakiste qui consiste à attaquer fermement et sans vergogne, voire détruire, les maths des autres, car c'est ainsi qu'on avance. Ce ne veut pas dire qu'on attaque la personne, mais sur ce qu'elle fait il ne faut jamais se contenir parce que sinon on passera à côté de choses peut-être importantes.
C'est un état d'esprit, il est très contestable. En tout cas il me semble que c'est celui de Serre.
Si si, il l'explique très bien. Des maths "qui vous font de l'effet".
Ca n'est pas suffisant ?
That’s canonical: the beauty implied by femininity as it exists on women - there is an archetypal awkwardness associated to commenting on one’s own beauty as it exists in greater magnitude than one’s peers.
This principle would most sensibly translate to the mathematics of a mathematician.
Les feuilles bien mystérieuses , car il enseigna toujours note, que le Professeur Serre tourne et retourne sans cesse , pose, reprend et repose de nouveau pendant l' entretien , contenaient -elles son testament scientifique qu'il fut empêché de délivrer par les deux intervenants ?
Sandales chaussettes !!!