Can you find area of the triangle ABC? | (Law of Cosines) |

Поделиться
HTML-код
  • Опубликовано: 28 дек 2024

Комментарии • 30

  • @johnbrennan3372
    @johnbrennan3372 5 месяцев назад +3

    Very good method. Excellent

    • @PreMath
      @PreMath  5 месяцев назад

      Many many thanks❤️🙏

  • @sergioaiex3966
    @sergioaiex3966 5 месяцев назад +3

    Very good

    • @PreMath
      @PreMath  5 месяцев назад

      Glad to hear that!
      Thanks for the feedback ❤️

  • @jamestalbott4499
    @jamestalbott4499 5 месяцев назад +1

    Thank you!

    • @PreMath
      @PreMath  5 месяцев назад

      You bet!
      Thanks for the feedback ❤️

  • @yalchingedikgedik8007
    @yalchingedikgedik8007 5 месяцев назад +1

    Good evining Sir
    Thanks for your efforts
    That’s very nice
    With my glades
    ❤❤❤❤❤

    • @PreMath
      @PreMath  5 месяцев назад

      Always welcome🌹
      You are very welcome!
      Thanks for the feedback ❤️

  • @marcgriselhubert3915
    @marcgriselhubert3915 5 месяцев назад +1

    Fine.

    • @PreMath
      @PreMath  5 месяцев назад

      Thanks for the feedback ❤️

  • @johnwindisch1956
    @johnwindisch1956 5 месяцев назад

    For me it was a teaching moment.
    Following the method and overcoming the confusion of the figure being not to scale (😂)
    Great problem!

  • @wackojacko3962
    @wackojacko3962 5 месяцев назад +1

    So cool! The Pythagorean Theorem is a Special Case of the Law of Cosines. 🙂 Had a lot of fun solving. 😉

    • @PreMath
      @PreMath  5 месяцев назад +1

      So cool!
      Thanks for the feedback ❤️

  • @AdemolaAderibigbe-j8s
    @AdemolaAderibigbe-j8s 5 месяцев назад +2

    Draw a line from C perpendicular to AD intersecting it at E. Then /_CED = 90 degrees, /_CDE = 60 degrees and /_ECD = 30 degrees. If CE = h, then ED = h/sqrt(3) from properties of a 30-60-90 degree triangle. Let /_CBE = alpha, then /_BCE = (90 - alpha) and /_ACE = 150 -(90- alpha) = 60 + alpha and /_CAE = 90 - (60 + alpha) = 30 - alpha (sum of angles of triangle CAE is 180 degrees).
    Next we use the sine rule on triangle CAE as follows:
    Sin(60 + alpha)/AE = Sin(30 - alpha)/CE or
    Sin(60 + alpha)/(7 - h/sqrt(3)) = Sin(30 - alpha)/h. ----(1)
    Then we apply the sine rule to triangle CBE as follows
    Sin(alpha)/CE = Sin(90 - alpha)/EB or
    Sin(alpha)/h = Sin(90 -alpha)/(30+h/sqrt(3)) ---(2)
    Next we expand the Sin angles and substitute the values for SIne and Cosine of angles 30, 60 and 90 degrees and end up with two equations for Tan(alpha) which we combine to get a quadratic equation for h: [h^2 + (201/(2*sqrt(3))*h - 315/2 = 0] which can be solved to give h = 2.59808.
    The area of triangle ABC is (1/2)*AB*CE = (1/2)*37*2.59808 = 48.064 (which is the same as (111*sqrt(3))/4).

    • @PreMath
      @PreMath  5 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @muntasirstudent1746
    @muntasirstudent1746 5 месяцев назад

    there are total 3 methods to solve it wow

  • @georgexomeritakis2793
    @georgexomeritakis2793 5 месяцев назад

    I solved this by drawing a segment CE vertical to AD and found that ED = 1.5. I used the formula tan(A+B) = (tan A + tan B) / (1 - tan A * tan B), knowing that A + B = 30.

  • @ericwickeywoodworkersurfbo6135
    @ericwickeywoodworkersurfbo6135 5 месяцев назад +1

    The law of cosines rules.

    • @PreMath
      @PreMath  5 месяцев назад

      Very true!
      Glad to hear that!
      Thanks for the feedback ❤️

  • @himadrikhanra7463
    @himadrikhanra7463 5 месяцев назад

    1/2 × root 3 / 2 ×7 ×37?

  • @giuseppemalaguti435
    @giuseppemalaguti435 5 месяцев назад +1

    111√3/4

    • @PreMath
      @PreMath  5 месяцев назад

      Excellent!
      Thanks for sharing ❤️

  • @gnanadesikansenthilnathan6750
    @gnanadesikansenthilnathan6750 27 дней назад

    Sir dint understood. Pls explain using simple method

  • @xualain3129
    @xualain3129 5 месяцев назад

    I have an alternative way to find x=3 without having to construct any lines using trigonometry only. Here is my version.
    Let Angle CAB=a then angle ACD=120-a, angle ABC=30-a and angle BCD=30+a.
    Law of sine for triangle ACD,
    sin a/ x=sin(120-a)/7. ……(1)
    Similarly for triangle BCD,
    sin(30-a)/x=sin(30+a)/30. …..(2)
    Dividing (1) by (2)
    sin a/sin(30-a)=sin(120-a)/sin(30+a)*30/7
    2*sin a*sin(30+a)=2*sin(30-a)*sin(120-a)*30/7
    -cos(2*a+30)+cos 30=(-cos(150-2*a)+cos 90)*30/7
    -cos(2*a+30)+sqrt(3)/2=(-cos(180-30-2*a)*30/7=
    -cos(180-(30+2*a))*30/7=cos(30+2*a)*30/7
    cos(2*a+30)=7/74*sqrt(3) from which ,we get sin(2*a+30)=73/74
    cos(2*a)=cos((2*a+30)-30)=cos(2*a+30)*cos 30+sin(2*a+30)*sin 30=47/74
    cos(2*a)=2*cos(a)^2-1=47/74 from which tan(a)=3/11*sqrt(3) or cot(a)=11/(3*sqrt(3))
    From (1)
    x=7*sin(a)/sin(120-a)=7*sin(a)/(sin(120)*cos(a)-cos 120*sin(a)=7/(sqrt(3)/2*cot(a)+1/2)=3

    • @PreMath
      @PreMath  5 месяцев назад

      Awesome!
      Thanks for sharing ❤️

    • @ramanan36
      @ramanan36 5 месяцев назад +1

      Exactly this is how I solved it 😄

    • @xualain3129
      @xualain3129 5 месяцев назад

      @@ramanan36what a coincidence! You must be quite a trigonometry lover as me.