Principal Components Analysis - SPSS (part 2)

Поделиться
HTML-код
  • Опубликовано: 26 дек 2024

Комментарии • 11

  • @anabondar6201
    @anabondar6201 6 лет назад +1

    Great explanation, thank you for doing these tutorials!

  • @JoaoGarrot
    @JoaoGarrot 7 лет назад +1

    Thank you so much for sharing your knowledge with all of us on CPA. Happy New Year 2018.

  • @rizaaali5352
    @rizaaali5352 8 лет назад +1

    Hi, can PCA be conducted on multiple response data set

  • @teachyourself-stem8971
    @teachyourself-stem8971 4 года назад

    Thanks very much for your video. How do you create a score plot pls?

  • @saifeddinnekhlif9940
    @saifeddinnekhlif9940 6 лет назад

    Please share to as a link to download the data used here! THNX

  • @anoukklootwijk
    @anoukklootwijk 11 лет назад

    When he says that oblique projection is the best of both worlds one should bare in mind that this projection allows for the two factors to be correlated to one another. This makes your "PCA" more difficult to interpret as it generates a structure and pattern matrix and technically it is not a true PCA. But you can definitely use this technique but be more careful when interpreting.

  • @ChristianSoost
    @ChristianSoost 11 лет назад

    where is part 3?

  • @Sugarskulls_forever
    @Sugarskulls_forever Год назад

    thank you

  • @physiosambit
    @physiosambit 12 лет назад

    Thanks..appreciate it :)

  • @Landonismo
    @Landonismo 9 лет назад

    this should be called an spss tutorial, not a pca tutorial

  • @olaolara883
    @olaolara883 10 лет назад +2

    bad ppresentation...too verbose!