Thermal Analysis in Ansys Workbench | Heat Transfer - Conduction and Convection

Поделиться
HTML-код
  • Опубликовано: 14 июл 2024
  • Can you write me a review?: g.page/r/CdbyGHRh7cdGEBM/review
    / mech-tech-simulations
    / mech.tech.simulations
    / mechtechsimulations
    mechtechsimulations.com/
    WhatsApp: +91 9488469801
    Timestamps:
    00:00 Intro
    00:09 Workbench setup
    00:30 Engineering data and material selection
    01:01 Design cylinder geometry
    03:18 Create mesh
    04:01 Define boundary conditions
    06:59 Analyzing results
    09:05 Design fins
    12:27 Update convection surface
    13:38 Analyzing results with fins
    13:54 Outro
    / mech_tech.90
    / mechtechpage
    ANSYS Workbench is a powerful simulation software that can be used for a wide range of engineering analyses, including conduction and convective analysis. In this tutorial, we will walk through the steps required to perform a conduction and convective analysis in ANSYS Workbench.
    Step 1: Create a New Project
    Launch ANSYS Workbench and create a new project. Select the desired analysis type (e.g. thermal) and enter a name for the project.
    Step 2: Geometry Creation
    Create the geometry for your analysis using the Design Modeler tool in ANSYS Workbench. The geometry should include all relevant details, such as the size and shape of the object, as well as any boundaries or interfaces that will be relevant to the analysis.
    Step 3: Meshing
    Once the geometry is created, the next step is to generate a mesh. Meshing is the process of dividing the geometry into small, interconnected elements that will be used to perform the analysis. Select the appropriate meshing tool and specify the desired mesh size and other relevant parameters.
    Step 4: Define Materials
    In this step, we define the material properties for each part of the model. For example, if you are analyzing a metal component, you will need to specify the thermal conductivity, density, and specific heat of the metal. This information can typically be found in material data tables or online resources.
    Step 5: Boundary Conditions
    Boundary conditions are the constraints that are applied to the model. For example, you may want to specify a heat source or a temperature boundary condition on a specific surface of the object. These boundary conditions will be used to solve the conduction and convective equations in the next step.
    Step 6: Solve the Model
    In this step, ANSYS Workbench will use the input parameters from the previous steps to solve the conduction and convective equations. ANSYS Workbench uses the finite element method (FEM) to solve these equations, which involves breaking down the model into small elements and solving the equations for each element.
    Step 7: Post-Processing
    Once the analysis is complete, ANSYS Workbench will provide the results in graphical format. The results can be used to visualize the temperature distribution, heat flux, and other relevant parameters. You can also use the post-processing tools to generate additional plots, such as temperature vs. time, or to export the results in a format that can be used in other software.
    In summary, the steps required to perform a conduction and convective analysis in ANSYS Workbench include geometry creation, meshing, material definition, boundary conditions, model solving, and post-processing. By following these steps, you can obtain accurate and useful results for your thermal analysis.

Комментарии • 11

  • @chandruprabakaran6892
    @chandruprabakaran6892 10 месяцев назад +1

    Well explained sir! God bless you.

  • @gugugaga2903
    @gugugaga2903 7 месяцев назад +1

    Thank you for the video. I want to simulate a chamber that is heated by an external heater. The heater has power of 300 W, but I want to model it in a way that the heater regulates at 100 degrees. Is it possible to set up these conditions?

    • @MechTechSimulations
      @MechTechSimulations  7 месяцев назад

      Yeah, it's possible, but it's part of electronics, I guess. If you're interested in visualizing the temperature distribution on the coil itself, you can consider thermal analysis. If there is airflow inside a chamber, you need to predict the temperature distribution in the chamber using CFD

  • @chandruprabakaran6892
    @chandruprabakaran6892 10 месяцев назад +1

    Can you please post on heat transfer analysis of vertical concentric tube water cooler

    • @MechTechSimulations
      @MechTechSimulations  10 месяцев назад

      Modeling cooling systems is not a challenging task; we can design the desired geometry and apply a negative heat flux to facilitate cooling. I plan to create a tutorial on this topic soon. In the meantime, I'd like to share one of my room cooling tutorials here. Please check it out.

    • @MechTechSimulations
      @MechTechSimulations  10 месяцев назад

      ruclips.net/video/IL_dscZfE4A/видео.html

  • @luffy5517
    @luffy5517 Год назад +1

    Sir can you help me to run a simulation open channel flow (multi phase ,k epsilon) with deflector

  • @IG.Golphyyyyy
    @IG.Golphyyyyy 9 месяцев назад +1

    👍👍