A awesome mathematics exponential problem | Olympiad Question | x=?

Поделиться
HTML-код
  • Опубликовано: 7 янв 2025

Комментарии •

  • @MuhammadJaveed-m9s
    @MuhammadJaveed-m9s День назад +1

    Very nice

  • @mircoceccarelli6689
    @mircoceccarelli6689 День назад +1

    👍

  • @NaeemKhan-q6w1v
    @NaeemKhan-q6w1v 2 дня назад +1

    ❤😂🎉😢😢😮😅😊

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 2 дня назад

    (x ➖ 3x+2).

  • @Mauuro-h4d
    @Mauuro-h4d 15 часов назад

    x+(12/x)+1=x•sqrt[(1/x)+(12/x²)+3]
    ○Dividing by x both sides:
    (1/x)+(12/x²)+1=sqrt[(1/x)+(12/x²)+3]
    ○Let a= (1/x)+(12/x²)+1:
    a=sqrt(a+2) with a≥0
    a²=a+2→a²-a-2=0
    →a=2 or a=-1 (reject a=-1

  • @walterwen2975
    @walterwen2975 День назад

    Olympiad Question: (x + 12/x + 1)/√(1/x + 12/x² + 3) = x, x ≠ 0, x ϵ R; x =?
    x(x + 12/x + 1) = (x²)√(1/x + 12/x² + 3) = √[(x⁴)(1/x + 12/x² + 3)] = √(3x⁴ + x³ + 12x²)
    (x² + x + 12)² = (x² + x)² + 24(x² + x) + 144 = 3x⁴ + x³ + 12x²
    x⁴ + 2x³ + 25x² + 24x + 144 = 3x⁴ + x³ + 12x², 2x⁴ - x³ - 13x² - 24x - 144 = 0
    2x⁴ - x²(x + 12) - (x² + 24x + 144) = 2x⁴ - x²(x + 12) - (x + 12)² = 0
    [x² - (x + 12)][2x² + (x + 12)] = 0, (x² - x - 12)(2x² + x + 12) = 0
    2x² + x + 12 = 0, x = (- 1 ± i√95)/2, Rejected; x ϵ R
    x² - x - 12 = 0, (x - 4)(x + 3) = 0; x - 4 = 0, x = 4 or x + 3, x = - 3
    Answer check:
    (x + 12/x + 1)/√(1/x + 12/x² + 3) = x
    x = 4: (4 + 12/4 + 1)/√(1/4 + 12/16 + 3) = 8/√4 = 4; Confirmed
    x = - 3: (- 3 - 12/3 + 1)/√(- 1/3 + 12/9 + 3) = - 6/√4 = - 3; Confirmed
    Final answer:
    x = 4 or x = - 3