Can you find the area of the Green shaded triangle? | (Square) |

Поделиться
HTML-код
  • Опубликовано: 7 ноя 2024

Комментарии • 58

  • @yalchingedikgedik8007
    @yalchingedikgedik8007 Месяц назад +1

    Thanks Sir
    That’s wonderful method of solution
    Thanks for your efforts
    Good luck
    ❤❤❤❤

    • @PreMath
      @PreMath  Месяц назад

      So nice of you dear
      You are very welcome!
      Thanks for the feedback ❤️

  • @Mastero-dj4uw
    @Mastero-dj4uw Месяц назад +4

    Great problem !
    Another shortcut I would like to share is knowing the concept that says : " If a point inside a parallelogram is connected to its verticies creating 4 triangles , then the sum of the areas of any two opposite triangles is equal to half of that parallelogram "
    Applying it , we get that the area of the triangle ADC + area of the triangle FDE = half the are of the square ACEF
    After finding that x = 13 then applying the Pythagorean theorem, we get the area of the square is 845 , half of it is 422,5
    The area of the triangle ADC = 169 , by symmetry.
    So the area of the triangle FDE = 422,5 - 169 = 253.5
    Thanks for reading, have a nice time

    • @PreMath
      @PreMath  Месяц назад

      Excellent!
      Thanks for sharing ❤️

    • @phungpham1725
      @phungpham1725 Месяц назад

      Thank you for sharing!

  • @phungpham1725
    @phungpham1725 Месяц назад +2

    1/ Note that the sums of the areas of the two opposite triangles in the square are equal (=half of the area of the square.)
    -> sqx= 169
    sq AC= 5.(169)
    Area of the green triangle= 5/2. 169 -169 = 253.5 sq cm😊

    • @PreMath
      @PreMath  Месяц назад

      Excellent!
      Thanks for sharing ❤️

  • @marioalb9726
    @marioalb9726 Месяц назад +3

    Area of yellow triangle:
    A=½b.h= ½2x² = 169 cm²
    x = 13 cm
    Side of square:
    s²= b²+h² = (2x)²+x²= 5x²
    s = 29,0689 cm
    Height of yellow triangle:
    A = ½b.h = ½s.h
    h = 2A/s = 11,62755 cm
    Area of green triangle:
    A₁ = ½b.h₁= ½s.(s-h)
    A₁ = 253,5 cm² ( Solved √ )

    • @PreMath
      @PreMath  Месяц назад

      Excellent!
      Thanks for sharing ❤️

  • @Birol731
    @Birol731 Месяц назад +2

    My way of solution ▶
    Let's calculate the area of the triangle:
    A(ΔABC)= 169 cm²
    169= [AB]*[BC]/2
    [AB]= 2x
    [BC]= x

    169= 2x²/2
    169= x²
    x= √169
    x= 13 cm
    [AC]²= [CD]²+[DA]²
    [AC]²= 4x²+x²
    [AC]= √5 x
    [AC]= 13√5 cm
    II) for the right triangle Δ(ACD):
    G ∈ [AC]
    [DG] ⊥ [AG]
    [DA]²= [AG]*[AC]
    [DA]=x
    [AG]= y
    [AC]= 13√5

    x²= y*13√5
    the same equations for the [CD]:
    4x²= (13√5-y)*13√5
    if we divide these two equations into each other we get:
    4x²= (13√5-y)*13√5
    x²= y*13√5

    y= 13√5/5 cm
    According to the Pythagorean theorem
    x²= y²+h²
    13²= (13√5/5)²+h²
    h²= 169 - 169/5
    h= 26√5/5

    h₂= a-h
    h₂= 13√5 - 26√5/5
    h₂= 39√5/5
    A(ΔDEF)= a*h₂/2
    A(ΔDEF)= 13√5*39√5/5/2
    A(ΔDEF)= 2535/10
    A(ΔDEF)= 253,5 cm²

    • @PreMath
      @PreMath  Месяц назад

      Excellent!
      Thanks for sharing ❤️

  • @giuseppemalaguti435
    @giuseppemalaguti435 Месяц назад +4

    l=13√5...h=13√5-338/13√5=507/13√5=39/√5...Agreen=lh/2=13√5*39/√5/2=507/2

    • @PreMath
      @PreMath  Месяц назад

      Excellent!
      Thanks for sharing ❤️

  • @abstragic4216
    @abstragic4216 Месяц назад +4

    Another very attractive problem thank you. I used a similar method except never calculated AC, just its square (845) which equates to the area of ACEF. I then concluded that the sum of areas of triangles ACD and DEF is half of the area of square ACEF (for any position of point D inside square ACEF). So the solution is (845/2)-169.

    • @bkp_s
      @bkp_s Месяц назад +1

      Very accurately my way of solving is similar to you.Area of opposite portions in a square are equal(845/2)🙏

    • @PreMath
      @PreMath  Месяц назад

      Nice work!
      You are very welcome!
      Thanks for sharing ❤️

  • @jamestalbott4499
    @jamestalbott4499 Месяц назад +1

    Thank you!

    • @PreMath
      @PreMath  Месяц назад

      You are very welcome!
      Thanks for the feedback ❤️

  • @prossvay8744
    @prossvay8744 Месяц назад +2

    Area of right triangle=169cm^2
    So 1/2(x)(2x)=169
    So x=13 cm
    ACEF is a square
    AC=√13^2+26^2=13√5cm
    AC=CE=EF=FA=13√5 cm
    Connect G to H (G on DE and H on AC)
    In right triangle ACD
    1/2(DH)(AC)=169
    1/2(DH)(13√5)=169
    So DH=26√5/5cm
    So DG=13√5-26√5/5=39√5/5cm
    Green shaded area=1/2(13√5)(39√5/5)=507/2 cm^2=253.5 cm^2.❤❤❤

    • @PreMath
      @PreMath  Месяц назад

      Excellent!
      Thanks for sharing ❤️

  • @AmirgabYT2185
    @AmirgabYT2185 Месяц назад +3

    We now area of yellow triangle, so we can find x and then sides.
    2x•x/2=169
    x²=169
    x=13
    13•2=26
    So sides are 13 & 26, hypotenuse will be:
    √(13²+26²)=√845=13√5
    Let's drop a height from opposite vertex of a rectangle to the hypotenuse and to the upper side of a square (that is also side of green triangle).
    Then we got segment made of two heights that is parallel and equal to the side of a square.
    Let height to the hypotenuse be h(1), and height of triangle h(2).
    We can find h(1) by formula:
    h(1)=13•26/13√5=26/√5=26√5/5
    As the whole segment is equal to the side of square and is 13√5 (hypotenuse is also a side of square), h(2) will be:
    h(2)=13√5-26√5/5=(65√5-26√5)/5=39√5/5
    Finally, we can find area of a triangle:
    S∆=13√5•(39√5/5)/2=507/2=253,5
    Answer: 253,5 cm².
    Pin pls 🙏

  • @unknownidentity2846
    @unknownidentity2846 Месяц назад +2

    Let's find the area:
    .
    ..
    ...
    ....
    .....
    Since the triangle ABC is a right triangle, we can calculate the value of x as follows:
    A(ABC) = (1/2)*AB*BC
    169cm² = (1/2)*(2*x)*x
    169cm² = x²
    ⇒ x = √(169cm²) = 13cm
    Now we are able to calculate the side length s of the square ACEF by applying the Pythagorean theorem:
    s² = AC² = AB² + BC² = (2*x)² + x² = 4*x² + x² = 5*x²
    ⇒ s = √5*x = (13√5)cm
    A line through point D, which is parallel to AF and CE, may intersect AC at point G and EF at point H. Obviously we have DG+DH=GH=AF=s. The triangle ACD is obviously congruent to the triangle ABC and has therefore the same area. Since DG is the height of this triangle according to its base AC, we can conclude:
    A(ACD) = A(ABC) = (1/2)*AC*h(AC) = (1/2)*s*DG
    Now we are able to calculate the area of the green triangle:
    A(DEF)
    = (1/2)*EF*h(EF)
    = (1/2)*EF*DH
    = (1/2)*EF*(GH − DG)
    = (1/2)*s*(s − DG)
    = (1/2)*s² − (1/2)*s*DG
    = (1/2)*s² − A(ABC)
    = (1/2)*[(13√5)cm]² − 169cm²
    = (5/2)*(169cm)² − 169cm²
    = (3/2)*(169cm)²
    = 253.5cm²
    Best regards from Germany

    • @PreMath
      @PreMath  Месяц назад

      Excellent!
      Thanks for sharing ❤️

  • @alster724
    @alster724 Месяц назад +1

    An alternate solution to the last part is by "reverse" cross-multiplication.
    Since we know a+b= 169
    (845/2)= 169+c+d
    845= 338+2(c+d)
    507= 2(c+d)
    507/2= c+d
    253.5 = c+d
    c+d= A∆(green)
    A∆(green)= 253.5 cm²

    • @PreMath
      @PreMath  Месяц назад

      Excellent!
      Thanks for sharing ❤️

  • @adept7474
    @adept7474 Месяц назад +1

    АС = х√5. Height in ▲ADC = h = 2х/√5. Height in ▲FDE = H = х√5 - 2х/√5 = 3x/√5.
    S(FDE)/S(ADC) = H/h = (3x/√5)/(2х/√5) = 3/2. S(FDE) = 169 × 1,5 = 253,5.

    • @PreMath
      @PreMath  Месяц назад

      Excellent!
      Thanks for sharing ❤️

  • @MrPaulc222
    @MrPaulc222 Месяц назад +2

    The first bit looks straightforward, but trickier thereafter.
    2x^2 = 338 --> x^2 = 169 --> x = 13.
    676 + 169 = 845, so AC = sqrt(845).
    ACEF area = 845.
    Make point G on the line AC, such that DGA is 90deg.
    DGA is similar to ABC.
    13, 26, sqrt845) is similar to a, 2a, 13.
    Find DG. Call it x.:
    13/(DG) = (sqrt(845))/26
    338 = x*sqrt(845)
    338/(sqrt(845)) = x
    (338/sqrt(845)) * (sqrt(845)/sqrt(845)
    (338*sqrt(845))/845 = x
    I prefer leaving decimal to the very end but...
    x = 11.62755348299891 (rounded).
    sqrt(845) - 11.62755348299891 = 17.44133022449836
    sqrt(845) * 17.44133022449836 = 2* area of green triangle = 507 un^2. This was the exact answer displayed in the calculator - surprisingly, an integer.
    Green area: 507/2 = 253.5 un^2.
    Different method, but at least I got the right answer. If you think I made that difficult for myself, you should have seen my first attempt LOL.

    • @PreMath
      @PreMath  Месяц назад

      Excellent!
      Thanks for sharing ❤️

  • @himo3485
    @himo3485 Месяц назад +1

    2x*x/2=169 x^2=169 x=13
    AC=√[13^2+26^2]=√845
    ADC=169cm^2
    square ACEF=√845*√845=845cm^2
    area of Green shaded region :
    845/2 - 169 = 422.5 - 169 = 253.5cm^2

    • @PreMath
      @PreMath  Месяц назад

      Excellent!
      Thanks for sharing ❤️

  • @nandisaand5287
    @nandisaand5287 Месяц назад

    Solving in terms of X, and using cartesian system [D(0,0)], I found Green Triangle is an isosceles triangle.
    EF=ED=Sqrt(5)•X
    FD=Sqrt(2)•X
    Height: Sqrt(4.5)•X
    Area=½Sqrt(2)•Sqrt(4.5)•X²

    • @PreMath
      @PreMath  Месяц назад

      Thanks for sharing ❤️

  • @sergeyvinns931
    @sergeyvinns931 Месяц назад +1

    Aatec=845, Adec=338, Aadf=84,5, Aacd=169, Adec=845-338-169-84,5=253,5.

    • @PreMath
      @PreMath  Месяц назад

      Excellent!
      Thanks for sharing ❤️

  • @marcgriselhubert3915
    @marcgriselhubert3915 Месяц назад +1

    Yellow area = (1/2).x.(2.x) = x^2 = 169, so x = 13. Now AC^2 = x^2 + (2.x)^2 = 5.(x^2) = 5.169, so AC = 13.sqrt(5), it is the side length of the square ACEF.
    We us an orthonormal center A and first axis (AB). We have C(26; 13), VectorAC(26; 13), VectorCE(-13; 26), so E(13; 39), VectorEF(-26; -13), so F(-13; 26).
    Equation of (EF): (x +13).(1) - (y -26).(2) = 0 or x -2.y +65 = 0, Then distance from D to (EF) = abs(0 -2.13 + 65)/sqrt((1)^2 + (-2)^2) = 39/sqrt(5)
    The area of the green triangle is then: (1/2).EF.distance from D to (EF) = (1/2).(13.sqrt(5)).(39/sqrt(5)) = (13.39)/2 = 507/2.

    • @PreMath
      @PreMath  Месяц назад

      Excellent!
      Thanks for sharing ❤️

  • @sorourhashemi3249
    @sorourhashemi3249 Месяц назад +1

    Perfect. I love it challenging.
    My way :
    Area of triangle ADC=169
    Area of triangle AFD=RAD.845×RAD.845×h/2
    Area of triangle EDC= RAD.845×RAD.845-h/2
    So , areas of ADC+EDC+DAF- 845= 235.5 THE AREA OF GREEN TRIANGLE

    • @PreMath
      @PreMath  Месяц назад

      Nice work!
      Thanks for sharing ❤️

  • @Waldlaeufer70
    @Waldlaeufer70 Месяц назад

    A(yellow) = 1/2 * 2x * x = x² = 169 cm²
    A(square) = d² = 4x² + x² = 5x² = 5 * 169 cm² = 845 cm²
    1/2 * A(square) = 422.5 cm² = 169 cm² + A(green)
    A(green) = 422.5 cm² - 169 cm² = 253.5 cm²

  • @michaeldoerr5810
    @michaeldoerr5810 Месяц назад +1

    The area is 507/2. That is definitely some clever geometry right there!!!

    • @PreMath
      @PreMath  Месяц назад

      Excellent!
      Thanks for the feedback ❤️

  • @quigonkenny
    @quigonkenny Месяц назад +1

    Let the side length of square ACEF be s.
    Triangle ∆ABC:
    [ABC] = bh/2 = AB(BC)/2
    169 = 2x(x)/2
    x² = 169
    x = √169 = 13
    AB² + BC² = CA²
    (2x)² + x² = s²
    s² = 4x² + x² = 5x²
    s = √(5x²) = √5x = 13√5
    Draw MN, where M is the point on EF and N is the point on AC where MN is perpendicular to AC amd EF, parallel to FA and CE, and passes through D. As MN is perpendicular to AC amd EF, MN = CE = FA = s. Let MD be h, so DN = s-h = 13√5-h.
    As AC is the diagonal of rectangle ABCD, triangles ∆ABC and ∆CDA are congruent.
    Triangle ∆CDA:
    [CDA] = bh/2 = AC(MD)/2
    169 = 13√5(13√5-h)/2
    338 = 845 - 13√5h
    13√5h = 845 - 338 = 507
    h = 507/13√5 = 39/√5
    Triangle ∆EFD:
    [EFD] = bh/2 = EF(MD)/2
    [EFD] = 13√5(39/√5)/2 = 507/2 = 253.5 cm²

    • @PreMath
      @PreMath  Месяц назад

      Excellent!
      Thanks for sharing ❤️

  • @cyruschang1904
    @cyruschang1904 Месяц назад

    x(2x)/2 = 169
    x = 13
    diagonal of the square = side of the square = ✓(13^2 + 26^2) = 13✓(1 + 4) = 13✓5
    the height of the left triangle = 13(13/13✓5) = 13/✓5
    the height of the right triangle = 26(26/13✓5) = 52/✓5
    green area = (13✓5)^2 - (13✓5)(13/✓5)/2 - (13✓5)(52/✓5)/2 - 169/2 = 5(13^2) - (13^2)/2 - 13(52)/2 - 169/2 = 5(13^2) - (13^2)/2 - 2(13^2) - (13^2)/2 = 2(13^2) = 338 cm^2

  • @alexniklas8777
    @alexniklas8777 Месяц назад

    253,5 cm^2
    Thanks sir😊

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho Месяц назад +1

    STEP-BY-STEP RESOLUTION PROPOSAL :
    01) 169 * 2 = 2X * X ; 338 = 2X^2 ; X^2 = 338 / 2 ; X^2 = 169 ; X = sqrt(169) ; X = 13
    02) AC^2 = X^2 + 4X^2 ; AC^2 = 5X^2 ; AC^2 = 5 * 169 ; AC^2 = 845 ; AC = sqrt(845) ; AC = 13sqrt(5) ; AC ~ 29,07
    03) Big Square Side = 13sqrt(5) lin un
    04) Big Square Area = 845 sq un
    05) Green Shaded Region Area = (Big Square Area - Rectangle Area) / 2
    06) GSRA = (845 - 338) / 2
    07) GSRA = 507 / 2 sq un
    08) GSRA ~ 253,5 sq un
    Therefore,
    OUR BEST ANSWER :
    The Green Shaded Region Area must be equal to 507/2 Square Units

    • @PreMath
      @PreMath  Месяц назад +1

      Excellent!
      Thanks for sharing ❤️

  • @misterenter-iz7rz
    @misterenter-iz7rz Месяц назад

    Much computation😢. x=13, AC^2=5×13^2, then the area is 1/2×5×13^2-169=3/2×169.😊

    • @PreMath
      @PreMath  Месяц назад

      Thanks for the feedback ❤️

  • @wackojacko3962
    @wackojacko3962 Месяц назад +1

    Even though on Friday the 13th I walked under a ladder ...didn't knock on wood...broke a mirror, ...the curse wasn't enough too drain the energy of my passion and success from doing math. 🙂