Stanford CS109 I Central Limit Theorem I 2022 I Lecture 18

Поделиться
HTML-код
  • Опубликовано: 2 фев 2025

Комментарии •

  • @yonatanoren
    @yonatanoren Год назад +2

    Very well presented and intuitive explanation of the CLT!

  • @TheHighestStateOfPotatoChips
    @TheHighestStateOfPotatoChips 5 месяцев назад

    Please elaborate more on the examples.

  • @omaraymanbakr3664
    @omaraymanbakr3664 2 месяца назад

    20:20 anybody knows where this -1 came from ?

    • @tanmeyrawal644
      @tanmeyrawal644 2 месяца назад

      Phi(0) =0.5. So if you simplify then you would get -1

    • @adityabahuguna6815
      @adityabahuguna6815 Месяц назад

      There is a property : Φ(x) + Φ(−x)=1. They replaced Φ(−x) with 1 - Φ(x).

  • @MohammadrezaParsa-k7p
    @MohammadrezaParsa-k7p Год назад +2

    VERY GOOD 👍

  • @numairsayed9928
    @numairsayed9928 7 месяцев назад +3

    This lecture had a lot of gaps.

  • @aliajorian
    @aliajorian Месяц назад

    I did not understand why standard error is a good parameter! Let say the true mean is 85 and I have a sample of 83 and 83. Then unbiased estimation of mu is 83, unbiased estimation of variance is 0 which means that standard error of my estimation for mu, i.e 83 is 0.

    • @aliajorian
      @aliajorian Месяц назад

      OH, I got the answer in the end of the lecture at the time 47:00. This estimation is valid under i.i.d assumption.

  • @ChandrangsuBiswas
    @ChandrangsuBiswas Год назад

    What is this phi that is being used here?

    • @MohammadrezaParsa-k7p
      @MohammadrezaParsa-k7p Год назад +2

      Capital phi is the CDF of standard normal

    • @rudraprasaddash3809
      @rudraprasaddash3809 8 месяцев назад +1

      If you check the normal distribution video in the playlist, you will see, the Gaussian PDF is not a closed form, so calculating the probability using integral over the PDF is not possible. There they have mentioned, how these statiscians used the standard normal distribution i.e N(mean = 0, variance = 1) and come with the CDF function which is the phi table. Now, computing the integral for any normal distribution is possible if we convert the given X into the standard normal value i.e Z = (x - mean)/std, and refer the phi table to get the probability.
      So, P(X