Stanford CS109 Probability for Computer Scientists I Counting I 2022 I Lecture 1

Поделиться
HTML-код
  • Опубликовано: 22 дек 2024

Комментарии • 82

  • @Lilliliilliliitmd
    @Lilliliilliliitmd Год назад +50

    Literally the most wholesome professor I met at Stanford. Chris is one of the most genuinely good people that I have ever met that used ML for the good of this world. I miss taking CS109.

  • @geekyprogrammer4831
    @geekyprogrammer4831 Год назад +86

    What an energtic professor!! Very amazed by his energy and the way of his teaching!!

    • @AR-iu7tf
      @AR-iu7tf Год назад +1

      Agree ! What a way to teach and what a pleasurable way to learn! I am so glad I can at least experience this online - thank you prof Chris for posting your videos online

    • @ovge5696
      @ovge5696 Год назад +1

      Just give me the course material, no need for theatrics.

    • @geekyprogrammer4831
      @geekyprogrammer4831 Год назад +3

      @@ovge5696 if you dont like, dont comment. Simple.

    • @ovge5696
      @ovge5696 Год назад +2

      That defies the entire purpose of the comment section.

    • @geekyprogrammer4831
      @geekyprogrammer4831 Год назад +4

      @@ovge5696 Course materials are already there in the description. You are the one creating drama for no reason. I will compliment the person who are good at their job. You are no one to stop me.

  • @Pauline-smile
    @Pauline-smile Год назад +19

    With the energetic voice and great patience of the professor, looking forward to the next section!

  • @tanbir2358
    @tanbir2358 6 месяцев назад +16

    00:07 Introduction to CS109 and Professor Chris
    02:14 Passion for teaching and research in education technology
    05:46 CS109 course relies heavily on material from math 51 or CME 100.
    07:32 Understanding the unit choice and workload for CS109
    11:10 Encouraging lecture attendance through incentive system
    12:46 Multiple avenues for getting help and resources are available for CS109 students.
    16:40 Underestimation of complexity in language translation.
    18:09 Advancements in AI and technology have led to solving complex problems like speech transcription and protein folding.
    21:32 Introduction to the complexity of problem-solving and understanding images with distributions
    23:15 Understanding images through pixel values and the concept of visual cortex
    26:28 Neurons and layers of hidden neurons are combined to create a bigger probability machine.
    28:13 Intelligence in model comes from well-set weights
    31:40 Using probability theory to solve real-world problems.
    33:22 Fundamental probability theory in CS109 drives understanding of natural phenomena and application.
    36:36 Probability enhances understanding and enables cool applications
    38:04 Importance of using CS109 algorithm for accurate, shorter exams
    41:09 Probability theory helps update beliefs based on evidence.
    42:46 Probability theory foundation starts with counting
    46:00 Understanding counting outcomes with dice rolls.
    47:38 Understanding the step rule of counting in probability
    51:09 Understanding the steps in determining unique images using probability
    52:50 There are 5.8 times 10 to the power of 77 unique images from 12 pixels.
    56:37 Finite resources but infinite combinations
    58:27 Counting outcomes from mutually exclusive sets using addition.
    1:02:12 Using counting and or rule to break down large problems into smaller pieces.
    1:03:58 Understanding binary counting and possibilities
    1:07:29 Counting with overlapping sets
    1:09:24 Counting with steps or counting with or leads to specific formulas for counting outcomes.
    1:12:50 Using step rule of counting to determine total ways of organizing letters

  • @deutsch-7946
    @deutsch-7946 Год назад +16

    Great energy from Professor! Give this man a thumbs up.

  • @dragongali2340
    @dragongali2340 5 месяцев назад +11

    I didn't think that machine learning lectures could be this fun, thank you very much.

  • @sineadward5225
    @sineadward5225 2 месяца назад +1

    He is so wonderful and handsome and an awesome teacher. Chris, thank you so much for everything you do. The world needs more good people like you.

  • @navintiwari
    @navintiwari Год назад +6

    Oh! I just love the energy of the professor. So engaging.

  • @burnytech
    @burnytech 6 месяцев назад +5

    This professor has the nicest most hypercurious most friendly most exploratory most lovely etc. energy ever, he's amazing, I love him, he's super contagious 😄 💗 🥰 💖

  • @eternaloptimist2511
    @eternaloptimist2511 10 месяцев назад +5

    love him! thankyou from the small town in India!

  • @saminchowdhury7995
    @saminchowdhury7995 Год назад +7

    What a beautiful way of teaching. First make them understand the WHY of it then the HOW of it. The WHY is so important because this is where students might fall in love with the subject and maybe learn on their own. Its all about igniting that curiosity. No one class can teach them everything. But if you make them curious and the foundations strong, they will go on and teach themselves. Because they are in love with it. These Teachers are a gift to the world.

  • @gefallenesobst6855
    @gefallenesobst6855 5 месяцев назад +4

    Wow, this guy is great and amazing and everything else which is related to great professor!

  • @numairsayed9928
    @numairsayed9928 9 месяцев назад +5

    A nice way to visualize the last problem.
    let us first assume all the letters are distinct in the word 'BOBA' (or BOB'A).
    then there would naturally be 4! (24) ways to arrange it. Now, we will manage the B that was repeated.
    Notice how how in every permutation we have counted, the B was permuted as it was distinct but now all those permutations must be counted only once. To approach this, we would ask "What fraction of these 4! permutations are actually distinct?".
    To answer this, in any given random permutation lets say OB'BA, if we only look at the two Bs we can arrange them in 2! ways which is OB'BA and OBB'A, therefore the probability of any random permutation being unique 1/2!.
    Since this is true for each one of the 24 permutations, the total distinct permutation of the word BOBA is 4!*(1/2!) = 12.
    The illustrated explainantion was just to extend the idea up to multiple repeating letters.
    Therefore in case of the word MISSISSIPPI. the total number of distinct permutations are 11!*(1/4!)(1/4!)(1/2!).

  • @saranadeem1748
    @saranadeem1748 Год назад +16

    Finally, I landed on this series and completed the first lecture. What an incredible lecture! I am determined and hopeful for the next lectures. Probability isn't as scary as it was before this lecture. And yeah!! after graduation, I'll be one of those who would love to build further upon the foundation of probability.

  • @datahacker1405
    @datahacker1405 6 месяцев назад

    15:20 the lecture starts
    48:20 step rule of counting
    58:00 sum rule of counting
    1:01:00 6 bit problem and inclusion exclusion rule

  • @ZiaKhan-n6p
    @ZiaKhan-n6p 3 месяца назад

    Sir,you are the only one teacher who make me more energetic after attending lecture....👌👌

  • @xiaomaojia
    @xiaomaojia 5 месяцев назад

    Looking forward to other course taught by this teacher, he is so energetic and enthusiastic! What a great lecture

  • @arastooajorian9069
    @arastooajorian9069 24 дня назад

    How good are you! This lecture is the best one I have ever seen regarding to introduction of probability theory.

  • @hashimbush5486
    @hashimbush5486 Год назад +3

    The spiritual art of counting it all joy. Having faith that no matter what input 😂) expect the best outcome

  • @jacobdichter5871
    @jacobdichter5871 Год назад +5

    Checked to see if I had 1.25x speed enabled at the beginning. Lol. Thank you for this highly valuable course!

  • @johnnybastos3390
    @johnnybastos3390 Год назад +2

    Galera, isso é ouro. O mais próximo que nós reles mortes oriundos de um interior brabo de alguma cidade do Brasil podemos chegar de um ensino de excelência. Aproveitem

  • @gustidewi7628
    @gustidewi7628 17 дней назад

    Amazing Professor!!! Thank you Chris

  • @pfever
    @pfever Год назад +16

    Thank you for this great course, having access to the Problem sets would be amazing! they are a very important part of the learning experience 😢

  • @PJ-hi1gz
    @PJ-hi1gz 2 месяца назад

    Number of distinct arrangements for "BOBA":
    The 2 B's create combinations that can repeat themselves, so can use the Sum Rule of Outcomes, and eliminating the duplicates
    - Placing B in the first spot, we have 3 possible combinations total when placing the second B (B 1 2 3)
    - Placing B in the second spot, we have 2 remaining combinations possible ( _ B 1 2)
    - Placing B in the before last position, we have 1 possible combination ( _ _ B B)
    So total possible combinations of B without repetition is 3 + 2 + 1 = 6
    For placing A and O, since it is an independent step from determining the B combinations, we can use the Step Rule of Counting and multiply with our 6 possible B outcomes.
    We only have 2 possible arrangements for A and O: either A first, O second, or vice versa (AO/OA)
    So we multiply the sum of possible B combinations, to the possible permutations of AO/OA, which is 2:
    6 x 2 = 12
    Therefore, there are 12 different ways to arrange the letters in "BOBA".

  • @hariprasath7050
    @hariprasath7050 3 месяца назад +3

    he said one sentence if you want to study on your own probability topic, you can't maybe you think Calculus Algebra Statistics are difficult to learn but that's not the true really the hardest subject I found in recent day is probability we studied probability in graduation and high school you found probability is easiest topic to solve it but if you want to use probability in real world application like AI it is harder to do because it confuse a lot due to randomness and uncertainty things

  • @DataScienceAI-rf4kx
    @DataScienceAI-rf4kx Месяц назад

    its wowww giving that perspective make me love the "Chris"

  • @espinaca27
    @espinaca27 Год назад +2

    Now I see why Stanford and many other American unis are regarded so highly

  • @rudeprover
    @rudeprover Месяц назад

    Thank you, Chris! Thank you so much

  • @rajath_veerendra
    @rajath_veerendra 12 дней назад

    33:34 Kannada 💛❤ which is the National Language of Indian Subcontinent

  • @JimmieChoi93
    @JimmieChoi93 Год назад +7

    Can anyone confirm that the final answer for the BOBA question = 12?
    4*3*2*1 then divided by two because the B's have been doubled.
    The problem set app only available for Stanford students and I'm not. Thanks.

    • @samuelnavias9962
      @samuelnavias9962 Год назад +1

      Answer is 12 👍

    • @alif_ni
      @alif_ni 10 месяцев назад +1

      I made the code for it and yes I can confirm that the answer is 12.
      ['B', 'A', 'O', 'B']
      ['B', 'B', 'O', 'A']
      ['B', 'A', 'B', 'O']
      ['O', 'B', 'A', 'B']
      ['B', 'B', 'A', 'O']
      ['O', 'A', 'B', 'B']
      ['O', 'B', 'B', 'A']
      ['A', 'B', 'O', 'B']
      ['A', 'O', 'B', 'B']
      ['B', 'O', 'A', 'B']
      ['A', 'B', 'B', 'O']
      ['B', 'O', 'B', 'A']
      But I am not sure about the calculation of expected outcome, 4*3*2*1 divided by 2.
      Why its 4 ? because as my understanding, we only have 3 choice [B, O, A].

    • @abhinavk889
      @abhinavk889 8 месяцев назад

      @@alif_ni It's a common problem for students of Permutation and Combinations. If there are total n objects, of which m are alike of the same kind, p are alike of 2nd kind, then the total no. of unique combinations can be given by - n!/(m!*p!). For the case of BOBA, Total 4 places out of which 2 are alike (B in this case). Therefore the total no. of combinations become 4!/2! = 12. Similarly for MISSISSIPPI - total unique permutations can be 11!/(4!*4!*2!) = 51975. But here the instructor's intention is not to get the answer but to figure out if you can figure out the cases in counting upto these numbers.

  • @fayezalhussein7115
    @fayezalhussein7115 Год назад +2

    super amazing thank you stanford

  • @Dwika34
    @Dwika34 8 месяцев назад +1

    damn this is so intuitive thanks for posting

  • @renatasuba9589
    @renatasuba9589 Месяц назад +1

    Thank you!

  • @momen_ai
    @momen_ai Год назад +7

    Can you please share slides and problem sets?

  • @SuddenlySubtle
    @SuddenlySubtle Год назад

    I wonder if they used ML models to automatically blur some frames and bleep the audio... It at least have the models identify them. (Example: 1:00:02)
    Edit: Lol ... Maybe an ML model to find spelling issues (slide title at 1:01:05)
    Edit 2: Instructor's excitement is contagious!

    • @ItsZeropa
      @ItsZeropa 7 месяцев назад

      No they didn't, as a video editor I can tell u this much. Even if it is hypothetically possible it's just so much easier to go in post prod and do it yourself.
      for the blurred frames specifically, it was likely made to avoid potential copyright issues (right now it won't but potentially in the future if copyright laws change it might)
      u can't train a model to detect that lol, as all copyrighted materials are vastly different from each other, can be a photo, can be a real object like a ball with a logo, can be a background song. Models learn to distinguish between similar objects.

  • @tchappyha4034
    @tchappyha4034 Год назад +2

    Why do computer scientists use Mac instead of Windows? I use Windows but I am interested in Mac a little because so many computer scientists use Mac. I don't know why.

  • @wetyuu
    @wetyuu Год назад +3

    How do you get access to the program sets? :(

  • @mipmap256
    @mipmap256 Год назад +1

    pow(17e6, 12)=5.8e86

  • @VarunRaghavendra-yp5gk
    @VarunRaghavendra-yp5gk 3 месяца назад

    33:48 that is ಕನ್ನಡ

  • @ankitb3954
    @ankitb3954 8 месяцев назад

    Amazing professor

  • @alnasraltair8948
    @alnasraltair8948 Год назад +1

    What are prerequisites? Calculus?

    • @stanfordonline
      @stanfordonline  Год назад +3

      Hi there, thanks for your question! You can find the prerequisites on this page:online.stanford.edu/courses/cs109-introduction-probability-computer-scientists

  • @CKP-bould
    @CKP-bould Год назад

    I think the answer is 6. Since B and A is repeated so we are left with 3 unique choices B O A = 3 * 2 * 1 = 6

    • @monemahmed6830
      @monemahmed6830 Год назад

      You are considering 3 spots here. But there are 4 Spots. So more permutations are possible.
      For Example:
      ------------------------
      with three spots and B, O, A in this order we get one permutation only: BOA but with another B available: we get BBOA and BOAB with the same order.

  • @trantung2013
    @trantung2013 Год назад +1

    Is there any way for students outside Stanford could solve the problem?

  • @SaintC0bain
    @SaintC0bain Год назад

    Love him!!!

  • @momen_ai
    @momen_ai Год назад +1

    Thanky you for sharing

  • @AdeFirdaus-lk8lp
    @AdeFirdaus-lk8lp 4 месяца назад

    Good vibes, salam dari Indonesia!

  • @madankd
    @madankd Год назад

    what a great video man i love it

  • @arsnakehert
    @arsnakehert Год назад +1

    They put an "I've learned more in this video than in a whole semester of university!" kinda youtuber in the classroom lmao

  • @buthkhemra6613
    @buthkhemra6613 Год назад

    Can we have pdf lecture?

  • @pfever
    @pfever Год назад +1

    I'm surprised how Stanford is a top Uni, but their pedagogy is excellent such that any student irrespective of their academic level would understand what's is taught in class. Very different from the pedagogy approach in MIT where they have a expect the student to be excellent so they have a more strict/pedantic approach to teaching.

  • @TYN409
    @TYN409 Год назад

    good content

  • @defoer3049
    @defoer3049 Год назад

    this is why it's called Stanford.

  • @hydroshibatheseal
    @hydroshibatheseal 9 месяцев назад

    Like him or not, he definitely has the Ch-ris-ma 😉

  • @wizzelhoart
    @wizzelhoart Месяц назад

    Came here from the Wired video. Who signs off on my degree when I’m done?

  • @anon7977-z9l
    @anon7977-z9l Год назад

    I'm certainly grateful for having free content but I'd like to point out that it would be fitting to be a bit more precise numerically.
    Rounding is fine but getting a something times 10^77 instead of 10^86 is to be off by several orders of magnitude.
    I don't think that's just me being nit-picky...

  • @rono092
    @rono092 Месяц назад

    I am sorry, I don't try to be rude but, whats the point of this vids if there is no any homework/assignment available on the actual website ?

    • @nadathegeekster5563
      @nadathegeekster5563 Месяц назад

      If u check cs109 2022 the problem sets are avaliable on the website

  • @PeterKamau-ml5hm
    @PeterKamau-ml5hm Год назад +4

    Come back to Kenya 😂

  • @elliptictree
    @elliptictree Год назад +1

    ,💻🔨🚀

  • @cheapearth6262
    @cheapearth6262 7 месяцев назад +1

    learning probability for 12th grade from standford lol

  • @harishs9003
    @harishs9003 3 месяца назад

    Math does bloom😂