사건의 독립과 종속 벤다이어그램만 그리세요.
HTML-код
- Опубликовано: 20 янв 2025
- 조건부 확률에서의 사건의 독립과 종속에 관한 설명영상입니다.
보통 독립과 종속은 독립의 판별식을 통하여 찾는 경우가 많은데요, 이를 벤다이어그램으로도 쉽고 편리하게 해결할 수 있습니다.
🙋♂누구나 스스로 수학공부를 할 수 있도록, 사오수학
누구나 정말 쉽게 이해할 수 있는 사오수학의 무료 개념을 구독해서 활용해보세요!
/ @saomath
🔥사오수학 유튜브 멤버십 이용 안내(사오수학 200% 활용하기)
👉👉abit.ly/sp2bri
📘사오수학 강의들을 더 잘 활용하기 위해 필요한 교재 구입은 여기에서!
사오수학 교재 구매하러가기
👉👉saomath.com/pr...
⭐사오수학 멤버쉽 채널 가입하기
/ @saomath
🔷이 영상 말고도 사오수학의 모든 개념을 듣고 싶다면?🔷
[수(상) 개념영상 재생목록 바로가기]
👉👉 • 수(상) - 개념정리 (Lv1)
[수(하) 개념영상 재생목록 바로가기]
👉👉 • 수(하) - 개념정리 (Lv1)
[수1 개념영상 재생목록 바로가기]
👉👉 • 수1 - 개념정리 (Lv1)
[수2 개념영상 재생목록 바로가기]
👉👉 • 수2 - 개념정리 (Lv1)
[확률과통계 개념영상 재생목록 바로가기]
👉👉 • 확률과 통계 - 개념정리 (Lv1)
[미적분 개념영상 재생목록 바로가기]
👉👉 • 미적분 - 개념정리 (Lv1)
🤝협업 및 기타 문의
👉👉sujisaomath@gmail.com
👉👉카카오톡 채널 '사오수학'
수학 개념은 한 바퀴 다 돌렸는데 문제는 안풀리고…🤨
학원(인강, 과외 등)에서 하라는대로 숙제하고 했는데 여전히 틀리는 문제는 똑같고…🥲
개념이랑 문제가 연결이 안돼서 맨날 외우고…😞
틀린 문제 다시 풀면 또 틀리고…😭
뭘 어떻게 해야하지?
👉🔥실전개념+기출분석 강의 SAVOR🔥
abit.ly/adbvkr
abit.ly/adbvkr
abit.ly/adbvkr
abit.ly/adbvkr
abit.ly/adbvkr
와 가려운 부분을 긁어주셨네요. 수학 강사이긴 하지만 설명할때 뭔가 명확하지 않다 생각이 들었는데, 감사히 잘 들었어요!
수학강사가 그러시면 안대쥬 ㅜㅜㅎㅋㅋ
@@roe2010 맞아요 ㅎㅎ 그러면 안 되죠. 이과생이라 확통 다시 공부하고 있었어요!
@@docotinemath 아, 그랬군요.
아무리 그래두 저보다 천배만배 잘하실텐데 괜한 말 했네용...ㅋㅋ
선생님 유튜브 들어가서 공부 좀 해야겠어요
@@roe2010 아닙니다. 고등부 수학 뭐 얼마나 깊나요?? 학생들이 더 잘해야하고, 그렇게 만들어야죠. ^^
공부 즐겁게 하시고, 좋은 과정에 좋은 결과까지 기원합니다.
와 궁금했던 부분이 정말 시원-하게 해결됐습니다!
미쳤ㅅ다 너무 잘하셔서 영상삭제가 마려울 정도 ㅋㅋㅋㅋㅋ 그만큼 잘하신다는 거지~
정말 알기 쉽게 설명해주시네요!
6:45 이문제 질문이요!
두사건이 독립인데 교집합이 생길 수 있는건가요?
문제부터 이해가 안가서요ㅠ
교집합과 독립은 별개의 개념으로 생각해야 합니다.
두 사건이 영향을 미치는지 혹은 그렇지 못하는지는 서로 공통된 부분이 있는지 없는지와는 별개의 이야기입니다.
주사위를 던지는 건 독립시행의 대표적인 예라 첫번째 문제는 확실히 착각할 수 있겠네요...똑같은 말이라도 독립관계로 만들려면 처음 던졌을때 짝수의 눈이 나오는 사건 A 두번째 던졌을 때 3이하의 눈이 나오는 사건 B라고 시행 자체를 개별로 분리해야 완전한 독립이 되겠군요
[사오수학 이용 안내 (사오수학 200% 활용하기)]
👉👉abit.ly/sp2bri
🔷이 영상 말고도 사오수학의 모든 개념을 듣고 싶다면?🔷
[수(상) 개념영상 재생목록 바로가기]
👉👉ruclips.net/p/PLRgVHLadjcpKNV3HaRUPjzOySiZj7rG1g
[수(하) 개념영상 재생목록 바로가기]
👉👉ruclips.net/p/PLRgVHLadjcpJFLUe5Cbs6HZJpudPon-VG
[수1 개념영상 재생목록 바로가기]
👉👉ruclips.net/p/PLRgVHLadjcpIxOMpuaPkN6XlklyS-zLi_
[수2 개념영상 재생목록 바로가기]
👉👉ruclips.net/p/PLRgVHLadjcpJGtaBifBUI-CbanpXvCeII
[확률과통계 개념영상 재생목록 바로가기]
👉👉ruclips.net/p/PLRgVHLadjcpIEykj_lFu9Ua5VnHalDIoq
[미적분 개념영상 재생목록 바로가기]
👉👉ruclips.net/p/PLRgVHLadjcpIyB56oAL-FeQndEFRFa5sX
쉽게 잘 설명해 주셔서 감사합니다. 목소리 톤도 안정적이시라 집중이 잘 됩니다.
감사합니다ㅎㅎ
와진짜.. 유레카 그어떤강의보더 조아요
이런 개념을 정확히 모르고 문제를 푸니 문제 풀때마다 헷갈렷나봐요
배반사건은 애초에 a와b의 교점이 공집합으로 교집합 생기는게 안되지 않아요? 배반사건이면 종속이다에서 왜 교집합이 생기는 거죠?
배반사건은 교집합이 없기때문에 종속이 되는겁니다.
배반사건은 교집합의 확률이 0이 되기때문에 독립이 될 수 없고 종속이며, 배반사건이 교집합이 생긴다는 설명은 없었던 것 같은데 아마 약간의 오해가 있으셨던것 같습니다^^
이번에 영상 보고 공부하면서 수학 40점 올랐어요 ㅠㅠ 기말도 열심히 할게요
축하드려요^^
기말도 화이팅~!!
P(A교집합B)=P(A)P(B)가 독립이죠?
정말 완벽해요
❤❤❤❤❤
2007년 수능 가형 31번 문제에서 P(A)의 여집합값이 1/12 인데, 확률 A, B 두개의 원 밖에 있는 부분, 포함되지 않는 부분은 고려하지 않나요?
A의 여집합이 1/12가 아니고, A의 여집합과 B의 교집합 부분이 1/12 입니다. 그래서 A의 여집합 중에 B와 겹치는부분만 1/12로 나타내며, 그 바깥부분은 포함되지 않습니다^^
여기서 서로 영향을 주지ㅡ않는
것은 확률이 변하지 않으면 영향을 안준다고 보는 것이죠?
네 맞습니다. 그래서 그냥 영향을 주지 않는다 라고 생각하기보단, 확률에 변화를 주지 않는다고 생각하는 것이 독립을 이해하는데 조금 더 수월합니다^^
하나만 외적인 질문이지만 질문드릴게요 혹시 결합확률 분포에서 p(x,y)=p(x)p(y)가 성립하면 독립이라는데 여기서 p(x,y)를 p(x∩y)라는 개념과 같다고 이해해도 될까요?
네 맞습니다~
잦은 질문 죄송합니다. 하나만 더 너무 궁금해서 질문드립니다. 원래 독립이면 서로 영향을 안주니 공분산이0 인(관계가 없으니)것으로 이해했는데요. 독립을 확률만 같으면 독립이라 하니 공분산이0인 것이랑은 관련이 없는 것이죠?
저도 그부분은 대학생때 들었던 내용이라 기억이 잘 안나네요...^^;
죄송하지만 저는 수능수학만 다루고 있어 정확한 답변을 드리기 어렵습니다ㅜ
큰절 한번 올립니다.
야물딱지다