Performance Metrics, Accuracy,Precision,Recall And F-Beta Score Explained In Hindi|Machine Learning

Поделиться
HTML-код
  • Опубликовано: 6 янв 2025

Комментарии • 89

  • @sidnoga
    @sidnoga 2 года назад +38

    Sir, I am so happy for the students who don't have a good financial condition or because of English, won't be able to learn Data Science. This channel brings new hope for them, You are an inspiration for us.

  • @jitendrarathod6246
    @jitendrarathod6246 Год назад +21

    First time I could able to understand actual use of metrics after learning for 3 years 😂..nice

  • @SubhajitBarat
    @SubhajitBarat Год назад +5

    Its very good to know that you also answer immediately along with the questions which is a good way of teaching technique.

  • @muhammaduzair9779
    @muhammaduzair9779 18 дней назад

    Dear sir great teaching method.You deserve lot of Subscribers ❤

  • @pritamrajbhar9504
    @pritamrajbhar9504 7 месяцев назад +3

    this is the only video that gives detailed and simple explanation in 23 min.

  • @sahiljamadar7324
    @sahiljamadar7324 9 месяцев назад

    This helped to cover the evaluation metrics quickly in less time, definitely a nice video to see before interview. Thanks the teaching in simple manner.

  • @lavisharma3603
    @lavisharma3603 12 дней назад

    That's the best ml video ...best best best❤❤❤❤❤

  • @priyanshusinha1837
    @priyanshusinha1837 4 месяца назад

    for the first time, I got feel in Machine learning. THANK YOU SO MUCH.

  • @8149272052
    @8149272052 7 месяцев назад

    thankyou so much krish sir for making our concepts crystal clear...again thankyou ...doing hardwork for us

  • @Otaku-Chan01
    @Otaku-Chan01 8 месяцев назад

    Great explanation sir,
    as well as great examples.
    I was just looking for your videos in order to understand this concept.
    Couldn't find this topic in English so came here.

  • @mahajav
    @mahajav 11 месяцев назад

    Excellent, got a very good understanding of all the terms with proper examples

  • @optimizedintroverts668
    @optimizedintroverts668 6 месяцев назад

    Explained so wonderfully, made me understand fully..

  • @rajeevnayantripathi5370
    @rajeevnayantripathi5370 5 месяцев назад +2

    1. Start with Recall: Focus on maximizing recall to ensure you capture as many potential crashes as possible.
    The primary goal is to ensure that as many actual crashes as possible are detected.
    Missing a crash (high FN) could lead to significant financial losses . By maximizing recall, you reduce the risk of overlooking a critical downturn. This helps in avoiding missed opportunities.
    2. Optimize Precision: Once you’ve achieved a reasonable recall, work on improving precision to reduce the number of false positives. This ensures that when your model predicts a crash, it is more likely to be accurate, thus reducing unnecessary panic or overreaction in the market.

  • @SatyendraJaiswalsattu
    @SatyendraJaiswalsattu 9 месяцев назад

    Crystal clear 👍

  • @justinjosechitteth4163
    @justinjosechitteth4163 Год назад +1

    Bhai great video thankyou for the contribution ..

  • @anirudhjayant9557
    @anirudhjayant9557 2 года назад

    Best explanation one can expect!!! Excellent.

  • @SharpKnife523
    @SharpKnife523 Год назад +2

    Best way to make dumb people like me understand the performance measurement of ML models. I was always confused between Recall and Precision. Kudos to you Krish!!

  • @shahfaissal2945
    @shahfaissal2945 2 года назад +2

    I love the way you teach but everything is in bits and pieces . If there was a single playlist for data science with video numbers would have been great to follow .

  • @pintukumar-vo3yd
    @pintukumar-vo3yd Год назад

    Thanks sir , first time I got clean on this topic

  • @vibhutyagi8787
    @vibhutyagi8787 2 года назад

    Your videos are always helpful sir 🙌🏼

  • @sekharsamanta6266
    @sekharsamanta6266 2 месяца назад

    Just Awesome!

  • @MuhammadKhan-ok3hf
    @MuhammadKhan-ok3hf Год назад

    Excellent, best wishes ever, Thanks

  • @muhammadzohaib4343
    @muhammadzohaib4343 Год назад

    Sir you are great, Love from Pakistan

  • @AmeliaMelia-tj3kc
    @AmeliaMelia-tj3kc 4 месяца назад

    great teacher ever'

  • @abhishekpurohit3894
    @abhishekpurohit3894 5 месяцев назад

    superb explanation.

  • @abhilogy3322
    @abhilogy3322 Год назад

    absolute clear sir.

  • @sidnoga
    @sidnoga 2 года назад +2

    Sir, please make an end-to-end Machine Learning project till deployment in Hindi. It will be very helpful for us,

  • @satyamraj2039
    @satyamraj2039 3 месяца назад

    great video

  • @shadiyapp5552
    @shadiyapp5552 2 года назад

    Thank you sir ♥️

  • @sohampatell
    @sohampatell Месяц назад

    In H{beta} score the denominator 's {beta}^2 should be only multiplied to precision and not to whole of prcision+recall

  • @hari_1357
    @hari_1357 2 года назад

    Amazing sir thanks a lot

  • @blaze102
    @blaze102 Месяц назад

    18:57 recall is important

  • @nightwing4090
    @nightwing4090 9 месяцев назад

    Sir arent all these metrics then meant just for logistic regression, if we use LR or smth in which we have multiplie options confision matrix wont work ?

  • @shahmohammadmahdihasan324
    @shahmohammadmahdihasan324 Год назад

    Thank you so much

  • @SyedSamar-ze8jk
    @SyedSamar-ze8jk 8 месяцев назад

    Well done

  • @arjunhaldankar219
    @arjunhaldankar219 Год назад +1

    sir apne beta value kaise decide ki idhar 1 ya 0.5 ... i mean why for FP it is 0.5

  • @umeshsamal165
    @umeshsamal165 2 года назад

    Very amazing

  • @justinjosechitteth4163
    @justinjosechitteth4163 Год назад

    Bhai In precision is not the TP from all the Actual value(y) or is it from predicted value(y^) ?

  • @utsavraj224
    @utsavraj224 8 месяцев назад

    Make it for multiclass classification

  • @Mohd_Raavi
    @Mohd_Raavi Год назад

    Sir make more videos and keet it up

  • @javedalam0_786
    @javedalam0_786 7 месяцев назад

    Amazing tutorial I wish I had watched it before my exams 🫡

  • @hari_1357
    @hari_1357 2 года назад

    Sir if i join your full stack data science course , will you teach in the same way as in this video??
    I think you have taught very well !!

    • @krishnaikhindi
      @krishnaikhindi  2 года назад +1

      Yes sir

    • @RudraSingh-pb5ls
      @RudraSingh-pb5ls 2 года назад

      @@krishnaikhindi in this video which drawingboard tool are you using ?
      Is it Microsoft whiteboard ?

  • @WellPlayedGamingYT
    @WellPlayedGamingYT Год назад

    06:00 Sir You forget to cut this 😄

  • @RiffswithMohit
    @RiffswithMohit 2 года назад

    18:13 sir is case me to ager model sabhi ko cancer bata de to bhi ye best model rahega aapke logic ke hisab se q ki as u said person at lest test to karwa lega :P this question ask in interview I'm not able to answer.

    • @prakashraushan2621
      @prakashraushan2621 Год назад

      is case me although model ka accuracy badhega par precision kam ho jayega, bcoz FP + TP ka sum badhega.
      aur logically hm soche ki mera model sabko cancer patient bta dega to sare log ja kr check krwane lgenge, par hmne model phir bannya hi kis liye tha? taki isis gap ko kam kr ske right..............

    • @rasengan4480
      @rasengan4480 10 месяцев назад

      Type 1 and Type 2 error search karke uske baare me padho. Ek aise insaan ko, jise cancer nahi hai, usse ye bolna ki tumhe cancer hai, ye utna bada error nahi hai jitna bada error hoga ek aise insaan ko, jise cancer hai, usse ye bolna ki tumhe cancer nahi hai

    • @rajeevnayantripathi5370
      @rajeevnayantripathi5370 5 месяцев назад

      @@prakashraushan2621 nice explanation

    • @rajeevnayantripathi5370
      @rajeevnayantripathi5370 5 месяцев назад

      @@rasengan4480 nice explanation

  • @piyushshukla238
    @piyushshukla238 2 года назад

    Hi krish i m fresher in data science and i want to know how will i get the job?

  • @jitendergupta2240
    @jitendergupta2240 2 года назад

    theory toh samajh aa gaya, practical ke liye kaha se refer kare? Koi paid video hai kya??

    • @h44r96
      @h44r96 Год назад

      Yes same for me

  • @justinjosechitteth4163
    @justinjosechitteth4163 Год назад

    so bhai what is a proper example of a balance data set, is there any method/algorithm to balance these data set ? Also if we get unbalanced dataset does it mean the accuracy is low

    • @rajeevnayantripathi5370
      @rajeevnayantripathi5370 5 месяцев назад

      In an imbalanced dataset, it's not accurate to say that the model's accuracy will definitely be low or high. What we can say is that accuracy alone is not a reliable metric for evaluating performance in such cases.

  • @faizannaviwala163
    @faizannaviwala163 9 месяцев назад

    where r this lecture notes

  • @ng23neeraj
    @ng23neeraj 2 года назад +1

    sir, provide pdf file for this video lecture.

  • @justinjosechitteth4163
    @justinjosechitteth4163 Год назад

    Bhai what is support in the F beta score ?

    • @prakashraushan2621
      @prakashraushan2621 Год назад

      It's simply the number of instances in the matrix. I.e., the count of TP, TN, FP, FN

  • @__________________________6910
    @__________________________6910 2 года назад

    Hello krish sir can u tell me which drawing app or software you are using ?

  • @suvendudey8254
    @suvendudey8254 Год назад

    Tomorrow Stock market is going to crash that scenario i use recall bcz when (actually stock market are crush but model says it not crush so i use) plz sir corrrect or not reply me?

    • @rajeevnayantripathi5370
      @rajeevnayantripathi5370 5 месяцев назад

      1. Start with Recall: Focus on maximizing recall to ensure you capture as many potential crashes as possible.
      The primary goal is to ensure that as many actual crashes as possible are detected.
      Missing a crash (high FN) could lead to significant financial losses . By maximizing recall, you reduce the risk of overlooking a critical downturn. This helps in avoiding missed opportunities.
      2. Optimize Precision: Once you’ve achieved a reasonable recall, work on improving precision to reduce the number of false positives. This ensures that when your model predicts a crash, it is more likely to be accurate, thus reducing unnecessary panic or overreaction in the market.

  • @Creative_Minds185
    @Creative_Minds185 3 месяца назад

    precision

  • @netviz8673
    @netviz8673 4 месяца назад +2

    in confusion matrix the x axis or top line occupies actual values while the y axis or the vertical line occupies the prediction value. Accuracy is not used in case of imbalanced data eg 0:900 and 1:100 ie no of zeros are 900 and no of ones is 100. This is imbalanced data set. If we used accuracy in imbalanced data set then our accuracy will be high already which will give false signal. Suppose using this imbalanced data set we create a model that only generates 0 as the output then this model using the formula given TP+TN/all will give 90% accuracy as all TN will be hit and all TP will be zero but due to imbalance the accuracy will be high. Hence a differnet performance metric is used in case of imbalanced data set which are precision and recall. Precision is TP/(TP+FP) like spam email model and Recall is TP/(TP+FN) like cancer detection model. And in case of stock market prediction when we need to reduce both false positive and false negative then in that case f-beta score is used. When both false pos and false nef are importabt then beta=1 (harmonic mean) ie 2*(PR)/(P+R) and when FP is more imp than FN beta=0.5 and when FN is more imp than FP then beta=2 is taken.

  • @Arkestra_Moves
    @Arkestra_Moves 2 года назад

    Imbalance dataset miss ho gya video me lagging k karan

  • @NaveenSomalapuri
    @NaveenSomalapuri Год назад

    Is has a small correction which is rows represent actual class and columns represent prediction class

  • @aparnakumari-uw3op
    @aparnakumari-uw3op Год назад +1

    But if they asked why I gave more importance to FP or FN....why did I gave them equally importantance ...then what will be the answer

  • @Journeyintomotion
    @Journeyintomotion Год назад

    recall

  • @shobhangiverma7090
    @shobhangiverma7090 8 месяцев назад

    👍

  • @ghanashyampatil6499
    @ghanashyampatil6499 2 года назад

    F 1 score and f beta score same he kya

  • @DataScienceCenterbyVikasKumar
    @DataScienceCenterbyVikasKumar 3 месяца назад

    Confusion Matrix: ruclips.net/video/FVlqyKJMhy4/видео.html

  • @jasanimihir4994
    @jasanimihir4994 2 года назад

    Hello sir. We use precision when FP is important. Then what is the need of F beta score like we use beta=0.5 when FP>FN. could you please explain it.

    • @krishnaikhindi
      @krishnaikhindi  2 года назад +1

      We can use any one of them

    • @jasanimihir4994
      @jasanimihir4994 2 года назад

      @@krishnaikhindi thank you for the replying and clearing my doubt. Great teacher, great teaching skills and great person also❤️😇

  • @prakharjauhari2161
    @prakharjauhari2161 Год назад

    Hello sir
    Sir apna video ko ku bda diye timing08:34 pe

  • @shivamsingh7028
    @shivamsingh7028 Год назад

    iska answer

  • @BharatDhungana-n4s
    @BharatDhungana-n4s 11 месяцев назад

    pERFECT

  • @OmerQureshi-n4t
    @OmerQureshi-n4t 11 месяцев назад +6

    There is a mistake in F Beta score formula

    • @rajeevnayantripathi5370
      @rajeevnayantripathi5370 5 месяцев назад

      ( (1 + Beta^2) *(precision * recall) ) /(Beta * precision + recall)

  • @jannatunferdous103
    @jannatunferdous103 Год назад

    Sir what if Precision score and Recall score both become 0?
    Thanks

  • @gautamjain9232
    @gautamjain9232 Год назад +1

    actually in confusion matrix you mentioned wrong FP and FN just swap it then it is correct sir
    [1,0] = FN and [0,1] is FP

  • @Abaan9350
    @Abaan9350 Месяц назад

    maza nai aaya

  • @sauravraj5747
    @sauravraj5747 2 дня назад

    recall

  • @mihirparmar9441
    @mihirparmar9441 3 месяца назад

    Thank you sir😊