How to evaluate ML models | Evaluation metrics for machine learning

Поделиться
HTML-код
  • Опубликовано: 24 дек 2024

Комментарии • 43

  • @forprogramming8541
    @forprogramming8541 Год назад +9

    This video helped me to pass the azure data scientist associate exam.
    Thanks for the video.

  • @louisawang1308
    @louisawang1308 Год назад +7

    super clear explanation! I seldom leave comments, but this video totally amazed me!

    • @AssemblyAI
      @AssemblyAI  Год назад +1

      That's great to hear, thank you!

  • @DiwasTimilsina
    @DiwasTimilsina 2 года назад +7

    Wow, thank you so much for these video. I am a software engineer by trade but increasingly big tech companies have ML system design as one of their interview rounds. Your content was amazingly helpful in preparing for those interviews!

    • @AssemblyAI
      @AssemblyAI  2 года назад

      Great to know Diwas! Good luck with your interviews!

  • @penelopeharo8591
    @penelopeharo8591 9 месяцев назад

    Thank you so much, this video helped me understand the metrics in the clearest way possible.

  • @xxelurraxx232
    @xxelurraxx232 2 года назад +3

    *INSANELY* helpful. Thank you *so* much!

  • @ahmadebrahem4611
    @ahmadebrahem4611 7 месяцев назад +1

    Thanks a lot I needed this clarification for my presentation

  • @daniapy
    @daniapy 2 года назад +4

    Well explained! thank you soooooo much

    • @AssemblyAI
      @AssemblyAI  2 года назад

      You are very welcome. :) - Mısra

  • @Engineering_Bytes
    @Engineering_Bytes 28 дней назад

    love your videos

  • @narendrapratapsinghparmar91
    @narendrapratapsinghparmar91 11 месяцев назад

    Thanks for this informative lecture.

  • @daniocionini7043
    @daniocionini7043 Год назад +1

    Thank you for the informative video

  • @inkurutimes1332
    @inkurutimes1332 Месяц назад

    Well done 👍

  • @mahshidz6676
    @mahshidz6676 2 месяца назад

    thanks a lot for your explanations.
    Seems the MSE is like Brier score?!

  • @nikhilgoyal007
    @nikhilgoyal007 Месяц назад

    super! thanks!

  • @Mejhool-g5y
    @Mejhool-g5y Год назад +2

    How to evaluate clustering algorithms like K-Means and Fuzzy C-Means.

  • @jamesadeke9873
    @jamesadeke9873 Год назад +1

    Please ma, can you share the codes you used to plot the true positive rate vs false positive rate graph, PR curve? It looks so beautify and i can't get the exact, please help. Thanks in advance

  • @EasyAIForAll
    @EasyAIForAll 3 месяца назад +1

    Interesting how most people jump to the RECALL section. Why? Is it a harder topic?

  • @sholay7255
    @sholay7255 2 года назад +1

    Thank you for this video, Thank you so much. I have questions to ask based on this model evaluation, my questions go like this sir, " is there a way to use the confusion matrix to know the exact datapoint in our dataset our model got wrongly during the predictive system? Also, Sir when we deploy our model to a web app using streamlit, can we use a confusion matrix to figure out which exact datapoint our model predicted wrongly by applying the confusion matrix to the final predictive system output in the web app ?

  • @RollingcoleW
    @RollingcoleW 4 месяца назад

    How about the differences here for a non-linear regression? :)

  • @dr.dwight
    @dr.dwight Год назад

    Awesome content, but something unrelated question, What are your camera settings? I especially like your camera setup, could you give info on that? What lens, what aperture, and anything else is needed to replicate the same light/room setup. Thanks 🙂

  • @teaknowsoundlab
    @teaknowsoundlab 2 года назад

    thank you dear👏

    • @AssemblyAI
      @AssemblyAI  2 года назад

      You're welcome! - Mısra

  • @kristianfella-glanville
    @kristianfella-glanville 2 года назад

    Good video thanks

  • @aymanekanaoui9604
    @aymanekanaoui9604 Год назад

    how to calculate the coefficient of determination (R2)

  • @Lexxus28
    @Lexxus28 8 месяцев назад

    great!

  • @sultanaaa8282
    @sultanaaa8282 9 месяцев назад

    "شكرا جزيلا لك"
    This means "thank you so much" in Arabic 🕴

  • @kristianfella-glanville
    @kristianfella-glanville 2 года назад

    What do you think about repeated random data splitting e.g you split the data 80 percent for train and 20 percent for test on a random basis that preserves the class structure vs k fold cross validation? Edit yep I now know this is worse

  • @DaniyarRunning
    @DaniyarRunning 2 года назад

    Can you please upload code shortcuts of this metrics ?
    Thank you in advance

    • @AssemblyAI
      @AssemblyAI  2 года назад

      Depending on the language you're using, you'd need different resources, but for Python and the Scikit-learn library, here is some really good and comprehensive documentation, explaining the implementation of each metric: scikit-learn.org/stable/modules/model_evaluation.html

  • @haticeozbolat0371
    @haticeozbolat0371 Год назад

    Greatt

  • @amanpatil441
    @amanpatil441 2 года назад

    ❤️

  • @moab2192
    @moab2192 2 года назад

    Good explanation + beautiful face (:

  • @michaltrodler195
    @michaltrodler195 Год назад

    Idk i somehow seem not being capable of following this pace

  • @andresolbach
    @andresolbach Год назад

    How do you pronounce "Accuracy"? Its so triggering lmao
    Thats not american nor british english, right?

  • @greenbrothersuk
    @greenbrothersuk Год назад

    Well explained but might be good if you added something on threshold setting for binary classification