VARIABLE COMPLEJA 👉 La integral más importante

Поделиться
HTML-код
  • Опубликовано: 9 янв 2025

Комментарии •

  • @EduAlexification
    @EduAlexification 5 лет назад +91

    mi oído izquierdo sabe integrar en variable compleja ahora

    • @mathsup
      @mathsup  5 лет назад +10

      😌😂😊
      ¡¿Quién necesita los dos oídos para integrar?!

  • @mathsup
    @mathsup  4 года назад +2

    ¡Hola! 👋 ¡También en Twitch! www.twitch.tv/mathsup
    ¡Suscríbete! ruclips.net/user/MathsUP
    (ya sabes, ¡campanita!)🔔😜

  • @sergiblade7054
    @sergiblade7054 6 лет назад +6

    Lo he entendido bien y me ha ayudado. ¡Gracias por el vídeo!

  • @alejandrorodriguez1989
    @alejandrorodriguez1989 3 года назад +8

    Muchas gracias por tus vídeos! Tienes una forma de explicar tan natural que me imagino que me estás dando la clase mientras tomamos unas cervezas.

    • @mathsup
      @mathsup  3 года назад +1

      ¡gracias, Alejandro! Te agradezco mil tu comentario :)
      🍺🍻🍺🍻🍻🍺

  • @fdzgallen
    @fdzgallen 6 лет назад +4

    Van bien como repaso los videos tambien, un placer que no los alarges demasiado!

  • @Jeresabelox
    @Jeresabelox 4 года назад +4

    muy buen video! bastante claro y directo al punto

    • @mathsup
      @mathsup  4 года назад

      ¡muchas gracias, Jeremías!

  • @marianmares9707
    @marianmares9707 3 года назад +1

    Gracias maestro

  • @janelminyetyapellidominyet2297
    @janelminyetyapellidominyet2297 5 лет назад +2

    Gracias eres fuerte ..

  • @lasmatesnosirven94
    @lasmatesnosirven94 Год назад +1

    porque dejaste de subir videos hermano, tu contenido es bueno

    • @mathsup
      @mathsup  Год назад

      gracias! Me mudé a Estocolmo para hacer un postdoc, y allí me fue imposible grabar demasiado. Ahora estoy en Utrecht y espero volver a la carga.
      Gracias de nuevo!

  • @daftsergio2055
    @daftsergio2055 4 года назад +2

    Explicación 10/10

    • @mathsup
      @mathsup  4 года назад

      ¡Gracias! 😊

  • @manuelbueno8983
    @manuelbueno8983 4 года назад +3

    disculpa si me podrias explicar que representa el resultado de esa integral? porque en variable real representa el area bajo la curva pero y aca en complejos que representa?saludo

    • @mathsup
      @mathsup  4 года назад +2

      ¡Sí claro! Es muy buena esa pregunta y de hecho no sé si tengo una buena respuesta.
      Lo primero que se me ocurre es que en vez de pensar en el área bajo una curva, ayuda tal vez más a imaginarse estas integrales como integrales a lo largo de un camino en el plano complejo: si recuerdas, en ese caso de caminos en R^2 obtenemos que la integral nos dice la longitud de la curva. Creo que de alguna manera aquí obtienes una generalización con números complejos, pero tendría que pensarlo mejor.
      ¡Buena idea para un vídeo! Gracias por tu comentario.

    • @manuelbueno8983
      @manuelbueno8983 4 года назад +2

      @@mathsup de nada ggg solo aporto con mis dudas, si te sirven pues bien venido sea jajaja, estaré esperando con ansias el video, saludos

    • @norbertomarano8035
      @norbertomarano8035 4 года назад +2

      @@mathsup Creo que estarías calculando un área compleja. Al recorrer la curva en el plano complejo, 1/z es la altura compleja que conforman las paredes de una "hoja" que se levanta sobre esa curva y ese área terminamos calculando.. pero toma valores complejos. Es el caso análogo, en números reales, al cálculo de una integral de línea sobre una curva en el plano 'xy', de una función f(x,y) (integral de línea de un campo escalar).

    • @mathsup
      @mathsup  4 года назад +1

      ¡Gracias por el comentario Norberto! Tiene sentido, aunque yo estaba intentando encontrar un significado más "físico", ya que las áreas propiamente siempre son reales. Y no acabo de ver claro la analogía que dices, porque en funciones escalares vas de R^2 a R mientras que en funciones de variable compleja vas de C en C (que lo puedes pensar como de R^2 a R^2 con la sutileza de que el producto y división por vectores está definido).

  • @lalitagupta3303
    @lalitagupta3303 2 года назад +1

    Excelente!!

    • @mathsup
      @mathsup  2 года назад +1

      ¡gracias Lalita! :)

  • @suplucianomauro4769
    @suplucianomauro4769 3 года назад +2

    Que pasaria, o mejor dicho, como resolverias la integral si en vez de 1/z tenes 1/(z - z0) con z0 constante y distinto de 0.

    • @mathsup
      @mathsup  3 года назад +1

      Hola! Es exactamente lo mismo. Bueno, suponiendo que el disco está centrado en z0 (en ese caso r = |z-z0|).
      Si el camino de integración no rodea z0, entonces la integral será cero. Sigue viendo mis vídeos y descubrirás porqué ;)

    • @suplucianomauro4769
      @suplucianomauro4769 3 года назад

      ​@@mathsup
      Muchas gracias. Creo que se puede sustituir variables, tipo hacer w= z-z0 entonces el dw= dz y w=r9(e(ja)- ejb) con a variable y b constante y así se demostraría que daria lo mismo... no sé.
      Muy buenos tus videos, me he inscrito. Había estudiado esos temas en 2004 y la verdad que se me ha evaporado la mayor parte del conocimiento.
      Saludos de un Argentino que vive en Brasil

    • @mathsup
      @mathsup  3 года назад +2

      @@suplucianomauro4769 sí, exacto, puedes hacerlo así, ¡gracias! Saludos desde Barcelona.

  • @jenniferlopezcl___
    @jenniferlopezcl___ 4 года назад +1

    Gracias!

    • @mathsup
      @mathsup  4 года назад +1

      A ti! 😊

  • @franciscodanielquiroz9904
    @franciscodanielquiroz9904 4 года назад +3

    A lo mejor una duda tonta. En las funciones de variable real, si las integramos obtenemos el área de una curva. En las funciones de variable compleja, la curva esta en otro plano, en vez de ser el plano x, y, viven en el plano u, v. La pregunta es, ¿Cuál es el sentido de integrar funciones complejas? Si por ejemplo los resultados son números complejos, ¿eso representa un área bajo esa curva? ¿cómo?, si no, ¿qué estamos haciendo geométricamente cuando estamos integrando?
    Saludos

    • @mathsup
      @mathsup  4 года назад +1

      ¡Hola Francisco! La verdad es que la pregunta es buena y no sé cuál es la mejor manera de verlo: no eres el primero que me la hace. Quiero pensarlo bien y hacer un vídeo sobre esto más adelante.

    • @vancuverreis2102
      @vancuverreis2102 4 года назад +3

      Podría ser el cálculo del trabajo o del flujo de los campos reales u y v. Si f(z) = u + iv,

  • @otrodiaenlaescuela
    @otrodiaenlaescuela 3 года назад +2

    ¿Y como se integra (1/z+1/z^2)?

    • @mathsup
      @mathsup  3 года назад +3

      ¡puedes hacerlo con el mismo cambio de variables! El resultado será el mismo, porque el residuo de 1/z^2 en z=0 es 0 :)

    • @otrodiaenlaescuela
      @otrodiaenlaescuela 3 года назад +2

      @@mathsup Muchas gracias :D

    • @mathsup
      @mathsup  3 года назад +1

      @@otrodiaenlaescuela ¡Faltaría más! ;)

  • @xnn19
    @xnn19 4 года назад +1

    El Guaynaa enseñando matemáticas mola

    • @mathsup
      @mathsup  4 года назад

      ¡gracias! 😉

  • @franciscoduque7703
    @franciscoduque7703 Год назад +1

    Very COOL.

  • @naumarcheriscool
    @naumarcheriscool 5 лет назад +2

    esto es como asrm para mi

    • @mathsup
      @mathsup  5 лет назад

      Siempre es agradable resolver integrales complejas 😉

  • @juancarloscyan1738
    @juancarloscyan1738 2 года назад +1

    Muchas gracias por el video. He intentado generalizar esta integral al caso z^n. Resulta que da 2pi.i si n=-1 y 0 en cualquier otro caso. Me resulta raro que por ejemplo si f(z)=1/(z^2) la función no es analitica, luego no cumple el teorema de Cauchy y sin embargo la integral da 0. He probado con otro camino (un cuadrado de lado 2 centrado en el origen) y también da 0. Supongo que habrá caminos en los que no de 0, no?

    • @mathsup
      @mathsup  2 года назад

      ¡Hola Carlos! Efectivamente, da 0.
      Pues no, tomes el camino que tomes te dará cero :)
      Creo que tendrás que ver más vídeos para saber lo que está pasando jejej
      Verás que lo único que importa es el residuo en las singularidades, y en los ejemplos que comentas es cero.
      ¡Que lo disfrutes!

    • @juancarloscyan1738
      @juancarloscyan1738 2 года назад +1

      @@mathsup Efectivamente me falta mucho por aprender. Sin embargo (no se en que me equivoco), cogiendo un camino que empiece en z=1, recorra CCW la semicircunferencia hasta z=-1 y de ahí vuelta en linea recta hasta z=1, la integral me da -2

    • @mathsup
      @mathsup  2 года назад

      @@juancarloscyan1738 lo mejor está por llegar!
      Diría que no puedes tomar ese camino de vuelto porque pisas la singularidad

    • @juancarloscyan1738
      @juancarloscyan1738 2 года назад +1

      @@mathsup osea, que no es cierto que para cualquier camino da cero?

    • @mathsup
      @mathsup  2 года назад

      @@juancarloscyan1738 la integral de 1/z^n (n diferente de 1) a lo largo de cualquier camino cerrado es cero.
      El camino no puede pasar por encima del cero cuando n

  • @nathaly5957
    @nathaly5957 5 лет назад +2

    Por el teorema del residuo, el residuo es 1 y se multiplica por 2.pi.i cierto?

    • @mathsup
      @mathsup  5 лет назад

      ¡Efectivamente! 👌
      Aunque: si uno se pone quisquilloso 🤓, se da cuenta que se usa este resultado para demostrar el teorema (cfr. ruclips.net/video/wC3gVsnGSs8/видео.html), así que sería un poco circular usar el teorema aquí.
      ¡Gracias por el comentario! 😀

    • @nathaly5957
      @nathaly5957 5 лет назад +1

      @@mathsup gracias por responder!

    • @mathsup
      @mathsup  5 лет назад

      @@nathaly5957 😊😉🤓

  • @rodolfovelasquez5256
    @rodolfovelasquez5256 6 лет назад +7

    mmmm, dz depende de dos variables theta y r, no sólo de theta

    • @mathsup
      @mathsup  6 лет назад +17

      Efectivamente.
      Pero fíjate que, como discuto a partir del instante 3:20 del vídeo, estamos realizando la integral a lo largo de la circumferencia de radio r. Por tanto, r es constante en nuestro camino de integración y por ello, dz queda en función de dθ en este caso.
      De hecho, si el camino diera una vuelta alrededor de z = 0 pero no fuera una circumferencia, escribiríamos r en función de θ y el diferencial de z sería dz = ( r'(θ) + i r(θ) ) e^(iθ) dθ

  • @federicopagano6590
    @federicopagano6590 4 года назад

    esa integral da exactamente ln(z) y de ahi ya se deduce que da 2ipi de ahi la magia del exponente _1 sin pasar a polares(aunque sea lo mas usual pasar a polares)

    • @mathsup
      @mathsup  4 года назад

      hola Federico, gracias por el comentario. Pienso que lo que dices no es del todo correcto, ya que 1/z no tiene primitiva en todo C. Si tomas ln(z) como la primitiva, tienes que quitar un corte de ramificación. Si incluyes el corte tienes que tomar uno de los dos extremos de integración mediante un límite, lo cual dificulta la explicación.
      Por eso pienso que con el paso a polares el argumento es más limpio y sencillo de entender.

    • @federicopagano6590
      @federicopagano6590 Год назад

      @@mathsup exacto si se corta el lazo y se toma el limite existeprimitiva y da exacto mismo valor

  • @montanodoradogonzalojunior1848
    @montanodoradogonzalojunior1848 5 лет назад +1

    Buen video

    • @mathsup
      @mathsup  5 лет назад

      ¡Gracias! 😊

  • @josevitorcavalcante996
    @josevitorcavalcante996 4 года назад +1

    ¿Por que el partial D?

    • @mathsup
      @mathsup  4 года назад +1

      ¡hola! Es notación: quiere decir "la frontera de D". La frontera son los puntos del conjunto menos los de su interior.
      ¡Gracias por el comentario!

    • @josevitorcavalcante996
      @josevitorcavalcante996 4 года назад +1

      @@mathsup gracias

    • @mathsup
      @mathsup  4 года назад +1

      @@josevitorcavalcante996 a ti!

  • @giovannimariotte4993
    @giovannimariotte4993 4 года назад +1

    👏

  • @CaromheDj
    @CaromheDj 4 года назад +2

    porque solo se oye de un lado T_T

    • @mathsup
      @mathsup  4 года назад

      jajaj sorry! Es que es de los primeros vídeos y no me aclaraba mucho con el micro 😅

  • @alejandrosanchezmunoz4320
    @alejandrosanchezmunoz4320 5 лет назад +2

    Pliss audio en estéreo

    • @mathsup
      @mathsup  5 лет назад +1

      ¡Gracias!
      Tienes razón, es de mis primeros vídeos y no sabía muy bien cómo funcionaba el micro 😅

  • @loganxmen3114
    @loganxmen3114 4 года назад +2

    No se ve bien y el lápiz escribe muy delgado poca luz pero la clase es buena!!!......Gracias

    • @mathsup
      @mathsup  4 года назад +2

      ¡gracias! Creo que es algo que he mejorado en los vídeos más recientes: este es de los primeros 😅

  • @antoniodavid5928
    @antoniodavid5928 2 года назад +1

    No me parece una tontería de integral ..me aporto bastante

    • @mathsup
      @mathsup  2 года назад

      me alegro! :)

  • @joaquinjonquieres
    @joaquinjonquieres 4 года назад +1

    el audio anda mal, pense que era mi computadora

    • @mathsup
      @mathsup  4 года назад

      ¡Hola Joaquín! Gracias por el comentario
      Tienes razón, sólo hay un canal 😅
      Es un error que cometí en mis primeros vídeos, pero la gran mayoría están bien.
      Perdona por esto

  • @genesisdelatorrea5627
    @genesisdelatorrea5627 4 года назад +1

    Creo que me enamoré 🤪

  • @pabloliguatresca9634
    @pabloliguatresca9634 6 лет назад +1

    ay super dotado ponle mas ganas leñe

  • @jaumebofillmiralbell7728
    @jaumebofillmiralbell7728 6 лет назад +1

    Pole

  • @diegomedina4059
    @diegomedina4059 5 лет назад +1

    Muy buena explicación. Pero la introducción es mala. No podes decir que es una "Integral tonta".

    • @mathsup
      @mathsup  5 лет назад +2

      ¡Hola Diego! Gracias por tu comentario.
      Ups, era solo para dar confianza 😂. Mejoraré las introducciones el los próximos vídeos 💪, ¡gracias!

  • @carlosandree6590
    @carlosandree6590 4 года назад +1

    CrisGreen?

  • @eduardoguido3266
    @eduardoguido3266 5 лет назад

    Tonteria de integral? Un resultado tan grandioso y el trabajo de alguien que lo hizo con tanto rigor para que le llames asi... pff que basura.

    • @mathsup
      @mathsup  5 лет назад +3

      ups 😅
      ¡Estoy de acuerdo contigo! Por eso titulé el vídeo como "La integral más importante".
      Es una tontería en tanto que es sencilla, entre todas las integrales que uno se puede encontrar en un curso de variable compleja 😱

  • @marianmares9707
    @marianmares9707 3 года назад +1

    Gracias maestro

    • @mathsup
      @mathsup  3 года назад

      ¡gracias a ti por el comentario!