Proof of Stirling's Formula, Part 3.

Поделиться
HTML-код
  • Опубликовано: 20 дек 2024

Комментарии •

  • @juliefinkjulesheartmagic1111
    @juliefinkjulesheartmagic1111 7 месяцев назад

    Another great informative, clear video! Thank you 😊

  • @Elstupidofood
    @Elstupidofood 9 месяцев назад +1

    Nice

  • @MathFromAlphaToOmega
    @MathFromAlphaToOmega 9 месяцев назад

    Nice proof! I think you can also use the Wallis product for pi to get the derivative of the zeta function at 0 (something like 1/2*log(2pi)).

    • @coconutmath4928
      @coconutmath4928  7 месяцев назад

      Thanks! Yes, to do this you need to differentiate the eta function (which is like an alternating zeta function) and then use the Wallis product to evaluate the resulting sum.
      en.wikipedia.org/wiki/Wallis_product#Derivative_of_the_Riemann_zeta_function_at_zero