Amazing Algebra Problem | Can You Try?

Поделиться
HTML-код
  • Опубликовано: 17 янв 2025

Комментарии • 7

  • @Shobhamaths
    @Shobhamaths 9 часов назад

    E=89√3👍

  • @RashmiRay-c1y
    @RashmiRay-c1y 7 часов назад

    Let y=2x. Note that 2E= 32x^5 + 1/(32x^5) = y^5+1/y^5. Now x= 1/2(√3 - √2). Thus, y=√3 - √2 and 1/y = √3 + √2. So y+1/y = 2√3, y^2+1/y^2= 10, y^3+1/y^3 = 18√3. So, (y^2+1/y^2)(y^3+1/y^3)= 180√3 = 2E + y + 1/y = 2E + 2√3. Therefore E =(178/2)√3 = 89√3.

  • @gregevgeni1864
    @gregevgeni1864 8 часов назад

    Κ = 89√3 .

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 Час назад

    {1+1 ➖ }/4+{x+x ➖ }={2/4+x^2 }=2x^2/4 1x^1/2^2 x^1/1^2 (x ➖ 2x+1).6/{2+2 ➖}= 6/4=1.2 (x ➖ 2x+1).18+{x^5+x^5 ➖ }{1+1 ➖ }/16+{x^5+x^5 ➖ }={8+x^10}+2/{16+x^10}={8x^10+2}/16x^10=10x^10/16x^10 5^5x^5^5/8^8x^5^5 2^3^2^3x^2^3^2^3/2^3^2^3x^2^3^2^3 1^1^1^1x^1^1^1^1/1^1^1^1^1^1x^2^1^1^3 /x^2^3(x ➖ 3x+2).

  • @Fjfurufjdfjd
    @Fjfurufjdfjd 8 часов назад

    Ε=16χ^5+1/(64χ^5) 2Ε=32χ^5+2/(64χ^5)
    2Ε=(2χ)^5+1/(2χ)^5 σχεση 1.
    χ=[(3)^(1/2)-(2)^(1/2)]/2 2χ=(3)^(1/2)-(2)^(1/2)
    1/2χ=(3)^(1/2)+(2)^(1/2) αρα
    2χ+1/2χ=2(3)^(1/2)
    2Ε=[2(3)^(1/2)]^5-5×18(3)^(1/2)-20(3)^(1/2)
    Ε=178(3)^(1/2) /2
    Ε=89(3)^(1/2)

  • @Quest3669
    @Quest3669 8 часов назад

    2x= √3-√2 & (1/2x)= √3+√2
    (2x)^5 + (1/ 2x)^ 5= 178√3= K
    ?= K/2= 89√ 3 soln.

  • @ManojkantSamal
    @ManojkantSamal 8 часов назад

    {(485 -198.*6)/4}+[(485+198.*6)/{(485)^2-(198.*6)^2}]........May be the half way of solution
    Explain later...