A Cambridge Integral Experience

Поделиться
HTML-код
  • Опубликовано: 4 окт 2024

Комментарии • 328

  • @dombacino7669
    @dombacino7669 3 года назад +390

    “Well why, because it’s on my shirt” no further explanation needed

  • @finnhogan5525
    @finnhogan5525 3 года назад +217

    You're analogy of step questions being like a having a tasting menu was really funny and creative. I have been doing the step past papers for over 2 years now and I have never thought of it like that.

    • @blackpenredpen
      @blackpenredpen  3 года назад +21

      Thanks!

    • @anandk9220
      @anandk9220 3 года назад +7

      @@blackpenredpen
      Can you solve this annoying question please? I'm trying a lot but have no clue as of now.
      Integral from -pi/4 to pi/4 of
      { [ (sin x)^6 ] + [ (cos x)^6 ] }
      ÷ { 1 + (6^x) }
      I came across this problem on toanmath.com. Thank you.

  • @toby.barnett
    @toby.barnett 3 года назад +231

    This is amazing!! Please do more STEP questions - they are lots of fun and your videos would be super helpful to people sitting it not only this year but in years to come! :D

  • @abubakar-serdiq
    @abubakar-serdiq 3 года назад +142

    Mentor.... I have been following your Lectures for the past 1yr. I have benefited alot from you sir.. keep the Good Job.
    Now I have decided to come up with a channel which that I will be teaching mathematics in my native language, to make Maths easier for my society members.
    Your students from Nigeria

  • @cycklist
    @cycklist 3 года назад +63

    Love this 👍 Classic BlackPenRedPen returns 😀

  • @anshumanagrawal346
    @anshumanagrawal346 3 года назад +19

    I would never have thought I would be able to understand every step of such a hard-looking problem

  • @echohasbinokiller4
    @echohasbinokiller4 3 года назад +107

    Me at a fancy restaurant
    Waiter: Now, to finish your second course, we are you going to serve you... I don't know.

  • @mohammadfahrurrozy8082
    @mohammadfahrurrozy8082 3 года назад +177

    Bprp : its a cambridge exam question
    Me : oh no
    Bprp : its *question number 6*
    Me : (flashback to the legend) *oh no....*

  • @krishnanavati3715
    @krishnanavati3715 3 года назад +50

    Great video - step questions are really fun and lots of interesting ones come up. Hope you do some more!

  • @DevTech03
    @DevTech03 Месяц назад +1

    17:16 . Question becomes much simpler by f(x) = f(a+b-x) . We are only left with negative pi cube In the numerator. It's the simple integral of 1/(1+sinx)^2 which comes out to be 4/3. So 2I = - 4/3 pi^3

  • @parthgupta533
    @parthgupta533 Год назад +12

    Sir I literally owe 50% of my math knowledge to you, been following you since 2020 when I was new in tenth grade and didn't even knew calculus existed, but as time passed I saw thousands of questions being solved by you, I finally can say that calculus is obsessed with me 😂

  • @babajani3569
    @babajani3569 3 года назад +24

    Amazing. I would also like to see you give some STEP 3 questions a go. They are quite a lot more difficult and are more beautiful as well. There are some very beautiful one such as proving the irrationality of e etc.

    • @Jasomniac
      @Jasomniac 2 года назад

      Wow, I had to prove e was irrational once I entered college, that must be tough for a high school student.

  • @insouciantFox
    @insouciantFox 3 года назад +14

    Woohoo! I got this one! All by myself!
    Had me puzzled before I found the trick.
    Here's how I did it:
    Let the value of the integral be Q and the integrand be f(x)≡n(x)/d(x).
    Due to some theorem I can't remember the name of, the integral from a to b of f(x) is identical to the integral of f(b-x) over the same bounds.
    n(π-x)= 2(π-x)³-3π(π-x)²= 2π³-6π²x+6πx²-2x³ - 3π³+6π²x-3πx² = -π³+3πx²-2x³.
    Since sin(x)≡sin(π-x), d(x)=d(π-x).
    Adding the integrals of f(x) and f(π-x) yeilds a value of 2Q. The resultant integrand is: N(x)/D(x) := (n(x)+n(π-x))/d(x).
    Specifically:
    N(x) = (2x³-3πx³)+(-π³+3πx³-2x³) = -π³.
    D(x) = (1+sin(x))².
    Factor out the constant from the integrand. Then complete the difference of squares by multiplying N(x)=1 and D(x) by (1-sin(x))².
    This results in N(x) = (1-sin(x))²= 1-2sin(x)+sin²(x) and D(x)=cos⁴(x).
    Split the integrand into A, B, and C.
    A = sec⁴(x)dx = sec²(x)(tan²(x)+1) = u² +1 du
    B = -2sin(x)sec⁴(x) dx = -sec²(x)(sec(x)tan(x)) dx= -2v² dv
    C = sin²(x)sec⁴(x) dx = sec²(x)tan²(x) dx = u² du
    Evaluate the simple integrals. Note that on the boundary tan(x) disappears.
    What remain is:
    2Q = -⅔π³(sec³(0)‐sec³(π)).
    sec(π)= -sec(0)= -1
    Thus Q = -⅔π³ ≈-20.67.

    • @pickleyt6432
      @pickleyt6432 Год назад +1

      The rule you were thinking of is called Kings Rule of Integration… nice solution btw

    • @tfg601
      @tfg601 Месяц назад

      @@pickleyt6432 It's doesn't have a name merely due to the fact that anyone that graduates highschool can derive it. Really it's not a rule it's just "logic" in the math world.

  • @tommc1425
    @tommc1425 3 года назад +6

    If you do a substitution u=x-π/2, you can cancel almost everything by symmetry, after the cancellation you resubstitute back to x and you're only left with the integral of 1/(1+sin(x))². There are actually a lot of symmetries on the integral, they're just hidden by the bounds. You can skip the identity completely

    • @jewel8482
      @jewel8482 2 года назад +1

      I managed to do it by multiple substitutions!

    • @NoName-kj2vf
      @NoName-kj2vf Год назад +2

      I did this too. There is also another way to integrate 1/(1+sinx)^2 by multiplying numerator and denominator by (1-sinx)^2. You end up getting (1-sinx)^2 / cos^4(x). Expand the numerator and split the terms and it is fairly simple to integrate

  • @gigachad2419
    @gigachad2419 3 года назад +3

    Got this Integral Correct with Perfect Logic!!!
    I'm so Grateful....Thanks bprp for the Video❤🙏

  • @alwayslistening4444
    @alwayslistening4444 Год назад +1

    I appreciate how you contrasted the WolframAlpha result with the more informative expression of the evaluated integral. The intuition of a mathematician is enhanced by such expressions as opposed to a given expression's decimal equivalent.

  • @MathElite
    @MathElite 3 года назад +5

    Wow such a complicated integral but beautiful result

  • @slavinojunepri7648
    @slavinojunepri7648 Год назад +1

    The analogy to the six-course meal at the french restaurant falls in place. How magnificent this integral problem!

  • @ismailberbache8780
    @ismailberbache8780 3 года назад +14

    Amazing video! I really hope you do some more STEP questions, they’re really fun and it’s very helpful to 2021 step takers!

  • @seshnarayan7972
    @seshnarayan7972 3 года назад +5

    Dear blackpenredpen,
    I first used the definite integral property integral 0 to a f(x)=integral 0 to a f(a-x). I got the integral of the rhs as integral 0 to pi (-pi cube -2x cube+ 3pix square)/(1+ sinx)square. Since the first integral and this integral are exactly the same I named them both as "I" and added them to get "2I" so that the variable terms in the numerator would cancel out. So the result was "2I"= -pi cube integral 0 to pi dx/(1+sinx) square so I could solve for "I" and so the result would be I=-pi cube /2 integral 0 to pi dx/(1+sinx) square. But I did not know how to solve this integral so I looked it up on Wolfram alpha and it said that the value was 4/3. So I multiplied -picube/2 by 4/3 which is -2pi cube/3

    • @BCS-IshtiyakAhmadKhan
      @BCS-IshtiyakAhmadKhan 3 года назад

      You can write (1+sinx)^-2 =(cosx/2+sinx/2)^-4 then multiply num. and den. by sec^4x/2 after that put tanx/2 =t now you can easily solve

    • @seshnarayan7972
      @seshnarayan7972 3 года назад

      @@BCS-IshtiyakAhmadKhan oh I see. Thanks for the insight

    • @varunjagan4402
      @varunjagan4402 2 года назад +1

      Or write sinx/2 as 2tanx/2/(1+ (tanx/2)^2)

  • @moinmalik1320
    @moinmalik1320 Год назад

    You are doing a great service to all those who love and want to learn math.

  • @Eric-dt7bt
    @Eric-dt7bt 3 года назад +16

    I was preparing for STEP two years ago and I still remember this problem...
    Me: the first two parts are so easy, I got this
    Me, thirty minutes later: maybe I should prepare for another year

  • @yamikira6512
    @yamikira6512 Месяц назад

    I saw the thumbnail, started doing the integral, finally managed to evaluate it, then opened the video and realized... it's a step question.

  • @yoyoezzijr
    @yoyoezzijr 2 года назад +1

    in the last part, i did a w sub which will make it w³/3 + w with the bounds being 0 to 1 (tan0 = 0, tan45 = 1), which is just (1/3 + 1) - (0 + 0) so 4/3

  • @ginopaperino2608
    @ginopaperino2608 Месяц назад

    this man is powerful

  • @ekisvioleolivaradamos6701
    @ekisvioleolivaradamos6701 3 года назад

    I also have no idea until I watch your video... You're so brilliant... More power...

  • @morischacter1076
    @morischacter1076 2 года назад +1

    for the last part if you factor out x and let f(x)=1/(1+x)^2, you get Pi/2 and then you do it once again leaving 2x-3pi/(1+sinx)^2. break up the the numerator, and you get to the same final part much easier and quicker.

  • @narrotibi
    @narrotibi 3 года назад +6

    It's a hard life in the calculus world!
    This was brilliant.

  • @joshhutchinson7031
    @joshhutchinson7031 3 года назад +2

    Finally step question getting some recognition!!

  • @dirt3554
    @dirt3554 3 года назад +1

    Love the STEP content. It's great preparation!

  • @rob876
    @rob876 3 года назад

    to approximate -2π^3 / 3, use π is approximately cube root 31, This gives the answer -62/3 which is -20.67 to 2 decimal places.

  • @tkc-g8h
    @tkc-g8h 3 года назад +3

    Amazing video! When I did it myself for the first time,I got 1/2∫π^3/(1+sin x)^2 dx ,but I couldn't do anymore.
    Part1 is so hard to comprehend the first time I watched the video.I'd like to try again!

  • @nolimitderrick4822
    @nolimitderrick4822 3 года назад +5

    The hardest part of this integral for me was understanding that what I thought is a Greek letter is just how u right cos😂

  • @chessandmathguy
    @chessandmathguy 3 года назад +4

    this is amazing, thanks for posting!

  • @greenland8376
    @greenland8376 3 года назад +15

    I was eating frozen pizza while watching this and you now what, it really felt like a six-course menu in a fancy restaurant.

  • @mohammedhaidar3200
    @mohammedhaidar3200 2 года назад +1

    For step three instead of figuring out the identity of
    Integral[x^3 f(sinx) dx], I just factored out one x and assumed the rest were arcsin(sin(x)) and applied the first identity once, then I factored another x (or one of the arcsin(sinx) powers) and applied it again; I split the integral in two and applied it a third time, I got the same result.

    • @tupoiu
      @tupoiu Год назад

      arcsin is only a function to [-pi/2, pi/2] from [-1,1] so we can't do arcsin of x when it gets nearer to pi > 1. For this reason I think your method isn't complete.

  • @Xerkun
    @Xerkun 2 года назад

    This is awesome. Thank you for this! Please do more of this kind.

  • @reu.mathematicsacademy8566
    @reu.mathematicsacademy8566 2 года назад +1

    Tao of our time 👍 great problems solver..you teach me a lot... very unique blackpenredpen

  • @nepolionking2393
    @nepolionking2393 3 года назад +1

    He getting power from his ball
    On his hand😂

  • @dmddjack
    @dmddjack 3 года назад +1

    I got it correct before watching your video! btw this is quite a nice and elegant solution!

  • @erenozturk586
    @erenozturk586 3 года назад +2

    if you want to skip to straight to dessert, sub in u=pi-x, then add your result to the original integral, then after some nice cancellations let t=tanx/2 :)

    • @violintegral
      @violintegral 3 года назад

      When I got the integral from 0 to inf of -π³(1+t²)/(t+1)⁴ after the weierstrass substitution I was actually drooling all over this delicious integral. And after watching this video, it's interesting to see that bprp did it in a completely different way, using the results of the previous problems to help him. Really cool integral.

    • @erenozturk586
      @erenozturk586 3 года назад +1

      @@violintegral had the exact same experience haha

  • @MartinPerez-oz1nk
    @MartinPerez-oz1nk Год назад

    THANKS PROFESOR!!!, VERY INTERESTING!!!!!!

  • @diffusegd
    @diffusegd 3 года назад +5

    Ohhhhh I remember this question in one of the random past papers I did

  • @stevemonkey6666
    @stevemonkey6666 3 года назад

    This was a great journey. I like this video a lot

  • @aalsii
    @aalsii 3 года назад +1

    Q-6(B) was asked by IIT for Msc. mathematics exam too.

  • @benoist13
    @benoist13 2 года назад

    Another way is : 1) substitute x=u+pi/2 to get an integral between -pi/2 and pi/2 then use he fact that odd functions integrated symetricaly are zero and finally, substitute cos u = (1-t^2)/(1+t^2) with du = 2dt/(1+t^2) (where t = tan x/2). Note : in France, we do not use sec x and cosec x but 1/sin x and 1/ cos x.

  • @goodra4999
    @goodra4999 3 года назад +3

    I'm a Japanese college student.
    This lecture is very interesting and usuful for studying English,
    So it is wonderful.
    I'm sorry in poor English🙇

    • @efulmer8675
      @efulmer8675 Год назад

      Your written English is pretty good! I've met native English speakers with worse English than you so don't feel bad if you mess things up.

  • @bishalbhattacharjee5930
    @bishalbhattacharjee5930 3 года назад +3

    Sir please make a video of complete set theory with relations and functions. I didn't understand set in maths.

  • @carlosv.ramirezibanez3305
    @carlosv.ramirezibanez3305 3 года назад +1

    Otro gran video, gracias!

  • @avishii__________
    @avishii__________ 3 года назад

    Dang this guy is a genius

  • @colfrancis9725
    @colfrancis9725 3 года назад +1

    Very good, thank you. Your method for part 3 is good but not obvious - you went back to the subsitution y = Pi - x. Alternative methods exist and seem more obvious. For example, factorising the integrand as x f(Sin(x)) . (Polynomial in x) to give you something on which you can apply integration by parts (with the earlier results from the question). It's not faster but it's NOT SLOWER and it doesn't require much luck or special insight to make good progress.

    • @jeeves_wooster
      @jeeves_wooster 3 года назад +1

      Using symmetry here is definitely much more obvious as there's a pi within the integral. Integration by parts is generally much more messy even if it isn't longer.
      When looking at trig integrals one of the first things you go for is symmetry; before ibp.

    • @colfrancis9725
      @colfrancis9725 3 года назад

      @@jeeves_wooster Hmmm... Maybe. I'm glad you thought about symmetry, you're a better man than I am. I could easily have missed it.
      I think the main prompt for substituting y = Pi -x came from experience of the earlier questions (see approx 16:30 in the video for Blackpen's motivation) and that is ONLY partial motivation in my opinion. Before putting pen to paper, you can see (or reasonably imagine) a messy expansion of a (Pi-x) to the third power through which we would struggle to guess that we're going to get anything more useful than some way of integrating the x^3 f(Sin(x)) term in the original integral. It's just good fortune that things simplify better than expected (about 19:40 in the video) by taking TWO components from that expansion over to the other side. If you hadn't been lucky you would have been expecting to repeat the same kind of substitution process with the x^2 f(Sin(x)) term in the original integral. Let's be totally honest, I would expect most people to test the substitution idea on the lower order term, x^2 first before trying it with the x^3 term - there is no good reason to guess that you should start with the higher order term (i.m.o.)
      By comparison, the method of integration by parts (as outlined earleir) is something where we can see good progress being made on every step. You could teach that method to others AND justify the reasoning on each step easily. You said "ibp is generally much more messy..." but I would argue that the student can reasonably be expected to imagine (before putting pen to paper) that it won't be difficult here: After factoring out x.f(Sin(x)) the polynomial we have left is only of order 2, so it's coming down to order 1 after differentiation during ibp. Already at order 1 - there is no risk of the algebra becoming messy.

  • @tempoprofondo6866
    @tempoprofondo6866 3 года назад

    thank you very much it really helped me to solve this problem
    ::)

  • @TU7OV
    @TU7OV 4 месяца назад

    Bruh, I was just working on that exercise from Stewart's Calculus a few days ago.

  • @nasdpmlima6248
    @nasdpmlima6248 2 года назад +1

    This was fun. Took me back to 2004

  • @dxg5659
    @dxg5659 3 года назад +1

    Oh, that is awesome. This is why I love math because you can tinker with the equation with methods and properties and find the solution hidden in it. It’s like solving a puzzle. :D

  • @musiconline6849
    @musiconline6849 3 года назад +1

    Pls make marathon videos on linear algebra

  • @AdrienLegendre
    @AdrienLegendre 2 года назад +3

    You did this the hard way! For integrals over a finite interval, transform variable x so interval of integration is centered at 0. For example, u=(x-pi/2)/pi. The result is a sum of integrals of even and odd functions. Integrals of odd functions are zero. This brings you to the last step of your method. This method has far wider application and is simpler than the method you used.

    • @nickallbritton3796
      @nickallbritton3796 2 года назад +1

      He was just following the steps of the problem as it was given. Solving it another way in the exam would be pointless after doing all that work in the other parts.

  • @sumanprasad9691
    @sumanprasad9691 3 года назад +6

    We in India have to do integrals of comparable difficulties for the JEE Advanced.

    • @varunjagan4402
      @varunjagan4402 2 года назад +3

      Yeah cleared it this year......in india just based on face value lots of students can sit for Cambridge and Oxford ....but fees and the interview part of the exam makes us go towards the iits

  • @isd99
    @isd99 3 года назад +3

    Love the 6 course meal analogy

  • @maxwellsequation4887
    @maxwellsequation4887 3 года назад

    I remember being in the livestream. Good times.

  • @THNON230
    @THNON230 3 года назад +1

    السلام عليكم
    اني اتابعك من الوطن العربي...ممكن تضع ترجمة الى اللغة العربية... اعجبني طريقتك بالشرح... استمر👍

  • @alexmore3865
    @alexmore3865 2 года назад

    I usually don't like youtube math videos (they seem something dumb) but that was beautiful.

  • @fept4043
    @fept4043 2 года назад

    I doubt you'll see this but I am sitting the STEP 2 tomorrow, wish me luck!

  • @suryanshsiddhu007
    @suryanshsiddhu007 Год назад

    My answer for the last question is 8(pie)³/3

  • @ventival
    @ventival 3 года назад +1

    New to this channel and trying to understending why the pokeball (really good video btw)

  • @digbycrankshaft7572
    @digbycrankshaft7572 3 года назад

    Nice work 👍

  • @BalaMurugan-hk2gd
    @BalaMurugan-hk2gd 3 года назад

    I am just amazed

  • @shubhrojyotidhara9549
    @shubhrojyotidhara9549 3 года назад +2

    WELL IT MIGHT BE A STEP PROBLEM BUT IT IS A REGULATION PROBLEM IN JEE ENTRANCE TEST IN INDIA.....ALTHOUGH PRETTY INTERESTING THIS INTEGRAL IS.....I FOUND IT REALLY AWESOME. LOVE FROM INDIA TO BPRP

    • @babajani3569
      @babajani3569 3 года назад

      What is a regulation problem

  • @johncalculusmathsclass5998
    @johncalculusmathsclass5998 3 года назад

    Amazing I love this

  • @nicolascamargo8339
    @nicolascamargo8339 Год назад

    Excelente explicación woow

  • @tgx3529
    @tgx3529 3 года назад

    Maybe I am wrong, but if I use the substitution x=π/2-2y, then (1+sin(π/2-2y))=2 (cos y)^2, so I have after substitution integral on interval (-π/4;π/4) this integral 1/2 *(-π^3/2)/(cosy)^4. After the substitution z=tg y I have (-π^3/4)* [arctg1-arctg(-1)]= -π^4/8.

  • @saharhaimyaccov4977
    @saharhaimyaccov4977 2 года назад

    Video like this please 👏👑

  • @okhtayghorbani6361
    @okhtayghorbani6361 3 года назад +1

    👍🏻Great video

  • @pullingthestrings5233
    @pullingthestrings5233 3 года назад

    BR is a RUclipsr ☝🏾PRESENTING to the emergency room.

  • @iceIceCold666
    @iceIceCold666 3 года назад

    I LOVE THIS OMG

  • @mathevengers1131
    @mathevengers1131 3 года назад

    At 5:25- three pens in one hand. Yayyyyy!!!!

  • @ahmadalzyoud4996
    @ahmadalzyoud4996 3 года назад

    amazing integral

  • @amir78989
    @amir78989 3 года назад

    Step questions for me is like Gordon Ramsey on kitchen nightmares sampling the food

  • @tb-cg6vd
    @tb-cg6vd Год назад +1

    Some how I passed my STEP 2 exam 30 years ago. I think I was a different me then.

  • @MathKhangTran
    @MathKhangTran 2 года назад +2

    I'm from Vietnam. I like your lecture so much 👍👍. But can you explain why in the second part (which you prove the equalities of 2 integrals), you let y = pi - x? How you can think about that idea? I want to understand it clearly.
    Thanks a lot.

  • @chaosredefined3834
    @chaosredefined3834 3 года назад +6

    My first thoughts were tan(x/2). Wondering how messy that ends up getting...

  • @maximlavrenko1164
    @maximlavrenko1164 2 года назад +1

    10:40 so you just switched y to x even though y=pi-x??? that doesn't make sense

  • @JG-ne2mx
    @JG-ne2mx 3 года назад

    No words... just wow

  • @alberteinstein3612
    @alberteinstein3612 3 года назад +1

    When I think I can solve any integral that I come across... And then I see this elegant monstrosity
    I feel so dumb 😅

  • @Joseph2302
    @Joseph2302 3 года назад +1

    His sponsor should be a French restaurant six course meal ;)

  • @remzidag8735
    @remzidag8735 3 года назад

    Thank you

  • @youssefaly7067
    @youssefaly7067 3 года назад

    wow this is amazing.

  • @mohammadsalkhlayleh3121
    @mohammadsalkhlayleh3121 3 года назад

    Great Idea ❤❤😍😍😍

  • @2dlines
    @2dlines 3 года назад

    What about the next video on: integral of sqrt({1-sin x}/{1-cos x}) dx (sqrt is the square root function)

  • @aashsyed1277
    @aashsyed1277 3 года назад

    u are a master of integretion

  • @brierhehmeyer1471
    @brierhehmeyer1471 Год назад +1

    At 19:00 why can you just convert from y to x

  • @JigsaW-goat
    @JigsaW-goat 3 года назад +1

    Awesome 👍👌

  • @phoenixninja8872
    @phoenixninja8872 2 года назад

    Damn that flew right over my head 🥴

  • @playerscience
    @playerscience 3 года назад +1

    I love your videos and also............ 😊😊😊
    I love how you hold a POKEBALL in every video. 😍😍

  • @riadsouissi
    @riadsouissi 3 года назад

    Somehow I miss read the problem and replaced 3 in 3*pi*x^2 with a 2 and the solution didn't simplify nicely 😜
    So I ended up with an integral that still got x^2/(1+sin(x))^2 term and tried to solve it.
    This said, it is in my opinion a more interesting integral to solve. It takes us through integral of log(1+x^2)/(1+x^2) in the interval [0,1] and the solution has the catalan constant in it. To be exact, the integral of x^2/(1+sin(x))^2 is 2/3(pi^2-pi+pi*log(2)+2-4C) where C is the catalan constant.

  • @marcosjuniorquijadagonzale9778
    @marcosjuniorquijadagonzale9778 3 года назад

    You are amazing

  • @ryanjagpal9457
    @ryanjagpal9457 3 года назад

    Why is this so hard and complex? Why is it easy for you guys, this looks extremely hard

  • @SabioAC
    @SabioAC 2 года назад

    If you have a pro version, WolframAlpha probably gave you the same answer. If I enter this in Wolfram Language
    Integrate[(2x^3-3Pi x^2)/(1+Sin[x])^2,{x,0,Pi}]
    I get the same answer as you.

  • @Akashalomiitbombay
    @Akashalomiitbombay 3 года назад +4

    Am from India
    Student of mathematics
    Sir if u are muslim then Assalamu alaikum wa Rahmatullah
    Love u sir.❤️

  • @ernestschoenmakers8181
    @ernestschoenmakers8181 Год назад

    As an undetermined integral i can only solve it if i change the sinx into a complex notation.