Laplace Equation

Поделиться
HTML-код
  • Опубликовано: 7 янв 2025

Комментарии • 129

  • @OswaldChisala
    @OswaldChisala 7 лет назад +295

    Without imputing disrespect on other schools, I can tell quite easily from this video that MIT has incredible professors. Thank you for open-sourcing your content, it is going a long way to educate the interested among us. My regards, Oswald.

    • @markus-sagen
      @markus-sagen 7 лет назад +3

      Oswald Chisala couldnt Agree more!

    • @videofountain
      @videofountain 7 лет назад +3

      I enjoy listening to Mr. Strang. I wish he would make a statement about the excellent teachers he has experienced. Perhaps he already has. I would venture to guess he has experienced excellent learning inside and outside of MIT. He and others are great inspiration.

    • @1mol831
      @1mol831 2 года назад +1

      I'm just watching because the professors in my university has forgotten to do lectures about these, they are still coming up on the test, gotta do them anyways.

    • @owen7185
      @owen7185 2 года назад

      Couldn't agree more

  • @adoniasyoseph3290
    @adoniasyoseph3290 7 лет назад +25

    This man comes from another planet. You are the best teacher .

  • @SnydeX9
    @SnydeX9 5 лет назад +47

    God bless this man and whoever made this available.

  • @manugupta1958
    @manugupta1958 7 лет назад +141

    Today in 13min:16 second I learned something about Laplace equation, fourier series and it's application to PDE that I couldn't learn in a whole semester.
    Thank you MIT.

    • @wl4131
      @wl4131 6 лет назад

      Indeed

    • @niranjanarunkshirsagar
      @niranjanarunkshirsagar 5 лет назад +4

      You are absolutely right Manu. Our Indian education system is fallible, I got the same experience, my college lecturers never taught me that I am learning here on RUclips from MIT and Stanford open lectures. They are offering the greatest services to mankind.

    • @linranwu4940
      @linranwu4940 2 года назад

      same here

  • @chargeeverywhere
    @chargeeverywhere 7 лет назад +48

    This is how teaching should be done! So clear for once!

    • @akhildhatterwal3785
      @akhildhatterwal3785 4 года назад

      I think teaching is done in this way everywhere

    • @zakmatew
      @zakmatew 3 года назад +3

      @@akhildhatterwal3785 Not really

  • @sjn7220
    @sjn7220 3 года назад +17

    0:18 When he said I don’t have time, I thought this video was going to be over.

  • @dangakong6304
    @dangakong6304 Год назад +1

    Thanks to MIT, am capturing lectures across the continent in one of the world best universities . Thank you MIT. Thank you USA.

  • @tariqandrea398
    @tariqandrea398 2 месяца назад

    This absolutely floored me. It is dazzling in its clarity and simplicity. Unbelievable.

  • @shubhgupta6110
    @shubhgupta6110 5 лет назад +13

    Explaining concepts with such elegance.

  • @shakennotstired8392
    @shakennotstired8392 2 года назад +9

    I have gained much better insight from these videos. Thanks, professor Strang and MIT. I am forever grateful.

  • @taewoonglee4894
    @taewoonglee4894 7 лет назад +10

    He verifies the quality of his teaching! Fantastic!

  • @georgesadler7830
    @georgesadler7830 3 года назад +2

    This video helps with the introduction to partial differential equations. Laplace equation is well known in partial differential equations. Dr. Strang explains the subject very well.

  • @juniorcyans2988
    @juniorcyans2988 2 месяца назад

    I watched this video last semester and I couldn't really understand. Now I watched, I could follow completely! Thank Dr. Strang and MIT!

  • @michaelangaloe
    @michaelangaloe 2 года назад +5

    If someone asked me to describe a mathematician, It'd be Gilbert for sure.

  • @turokg1578
    @turokg1578 Год назад +2

    he's retired yet we're still learning from him

  • @mohammedkhan4990
    @mohammedkhan4990 7 лет назад +1

    Dr. strang is the best math professor period. Excellent lecture.

  • @MechanicalEI
    @MechanicalEI 5 лет назад +7

    Sir, Great Video. The illustration and example of the Laplace Equation were perfectly supported by your explanation. Thanks for uploading!

  • @Prophetic_heirs
    @Prophetic_heirs 6 лет назад +7

    after listening to prof gilbert in my final year of bachelors I am feeling like mind=blown.

  • @parianhatami
    @parianhatami 6 месяцев назад

    I love you prof. Strang! I needed this concept & no context could help me as much as you did!

  • @Keeper.AFOL5
    @Keeper.AFOL5 13 дней назад +1

    Thank you for making this available. It is a big help in understanding and explaining this section.

  • @brocktj4
    @brocktj4 3 года назад

    Dr. Strang truly is the GOAT.

  • @amberliu3154
    @amberliu3154 5 лет назад +6

    He is such a great professor!!!!! It makes so sense though his lecture.

  • @backlash67
    @backlash67 8 лет назад +52

    I love this man

  • @MaxvonHippel
    @MaxvonHippel 7 лет назад +3

    This is a superb lecture, thank you very much. - a pure maths major from Arizona

  • @maudentable
    @maudentable Год назад +1

    Gilbert Strang is the original kungfu master of mathematics. He is not a common textbook reader like the majority.

  • @quantummath
    @quantummath 5 лет назад +1

    lovely teaching method, more power to you Prof. Strang

  • @DJ-yj1vg
    @DJ-yj1vg 2 года назад

    Bringing back the cool to maths, one lecture at a time.

  • @gangadharjha1406
    @gangadharjha1406 4 года назад

    All the college maths teachers should watch and learn from this video before teaching

  • @nandakumarcheiro
    @nandakumarcheiro Год назад

    Combined effect of the Laplace equation and applying boundary conditions of wave theory reflects in energy amplification of crazy polynomials of real part and imaginary becomes an exponential function from logarithmic incrementa forming an exponential jump and collapse between a cos theta wave and sine theta waves promoting unimaginable amplification promoting a Psunami effect as boundary condition by merging by symmetry Fourier series.

  • @vaibhavshukla6926
    @vaibhavshukla6926 4 года назад +2

    Thank you so much. I am so happy right now. Professor, you made this so EASY.

  • @saptarshipaul1928
    @saptarshipaul1928 5 лет назад +6

    Every video starts with 'OKAY!!' :D

  • @nicomcmahon2491
    @nicomcmahon2491 2 года назад +1

    So accessible!! I wish my profs lectured like this!

  • @Overlander2022
    @Overlander2022 2 дня назад

    Best professor indeed!

  • @deday6525
    @deday6525 4 года назад +1

    1:31 , why when u equal x, the second derivatives will be zero 0?
    thanks in advance

  • @hsheng3577
    @hsheng3577 2 месяца назад

    Thanks, Professor Gilbert Strang♥

  • @nandakumarcheiro
    @nandakumarcheiro Год назад

    This may give further information of repeated compression and expansion derivatives involved in Laplace equation assisting Fourier series seems to be more informative.

  • @allandavis6116
    @allandavis6116 2 года назад +1

    Great video - but ... it would be helpful to have a discussion of when a solution exists, e.g. for 2-d circles, and when it doesn't, e.g. irregular boundaries. Also, what if time is a variable? What real world problems have solutions, which don't,, etc.

  • @hikmatullahpakhtoon3694
    @hikmatullahpakhtoon3694 4 года назад +1

    Flawless explanation. Thank you professor.

  • @wrox2757
    @wrox2757 2 года назад

    Oh my! I didn't know this was Gilbert Strang.

  • @axelmeramas976
    @axelmeramas976 4 года назад +1

    you are a life saver professor , thank you

  • @AbuSayed-er9vs
    @AbuSayed-er9vs 7 лет назад +2

    Excellent video pro.Gilbert and very... thanks for this.

  • @vidushitripathi2671
    @vidushitripathi2671 3 года назад +1

    Great teacher... 🙏🏻 Huge respect to you sir...

  • @rudhisundar
    @rudhisundar 2 года назад

    Love you oldie! God bless you!!

  • @Yume-x9v
    @Yume-x9v 7 месяцев назад

    5x + 10y + 15z = x = y = z = zeros. factorization zeros equation. la place equation.

  • @iam_sketch
    @iam_sketch Год назад

    It was kind of satisfying when he changed the cordinate system form Cartesian to polar 😌

  • @jupiter7795
    @jupiter7795 7 лет назад +15

    Careful, he starts going all "Final Solution" at 6:25.

  • @selfi23
    @selfi23 Год назад

    Yes Sir , Your Videos was Really Helpful a Lot for 'Sky Wolves' students.... Thank You soooo Much❤❤❤❤

  • @nandakumarcheiro
    @nandakumarcheiro Год назад

    The lunar boundary temperature value at the top bottom and inside seems to be surprising by applying Laplace Equation.

  • @vaibhavshukla6926
    @vaibhavshukla6926 4 года назад +1

    Sorry professor but did you mean to say 'steady-state' at 11:37. I think it won't be equilibrium but the temperature along that line will be zero.

    • @robertmines5577
      @robertmines5577 3 года назад +1

      Yes, steady state is the correct terminology here. Systems can exist at a thermodynamically non-equilibrium steady state. E.G. We can fix the boundary temperatures such that there is a permanent heat flux from one boundary to the other, but after infinitely long time, the entire domain asymptotically approaches a fixed temperature gradient. In short, Laplace's Equation can be viewed as the steady state of the equation dU/dt = d^2 U/dx^2 + d^2 U/dy^2 since the time derivative is set to 0.

  • @musicislife665
    @musicislife665 6 лет назад

    Congratulation Mr Gilbert Strand and thank you for your lesson.

  • @atriagotler
    @atriagotler 3 года назад +1

    I was strugling with the laplacian and real valued functions. And now I suddenly know the basics up to fourier 😂

  • @CatsBirds2010
    @CatsBirds2010 7 лет назад +1

    What a GREAT teacher!

  • @coder1124
    @coder1124 3 года назад

    Thank you MIT

  • @WadBex
    @WadBex 5 лет назад +1

    Splendid! Keep up the fantastic work!

  • @therealrictuar
    @therealrictuar 7 лет назад +1

    whoa never thought of it that way

  • @gauthampracharya9592
    @gauthampracharya9592 3 года назад

    rip saar, I louve ur veedios

  • @Matchless_gift
    @Matchless_gift 5 лет назад

    Big fan of prof. Strang, from india

  • @omega7377
    @omega7377 7 лет назад +4

    Great teacher!

  • @pappk.962
    @pappk.962 6 лет назад +2

    thank you, perfect and simple explanation

  • @PATHMINDER
    @PATHMINDER 3 года назад

    God bless you;Prof.

  • @saurabhmyblogging
    @saurabhmyblogging 10 месяцев назад

    Very nice lecture.

  • @Crossfire9211
    @Crossfire9211 3 года назад

    Utterly amazing

  • @chrispinchirhulwire4923
    @chrispinchirhulwire4923 5 лет назад

    a great topic given by great a sir

  • @jaeimp
    @jaeimp 5 лет назад

    The null space of the Laplacian operator... Thank you!

  • @lucasm4299
    @lucasm4299 7 лет назад +1

    The real or imaginary part of a holomorphic function is a solution to Laplace's Equation.

  • @alimohammadigheidari2614
    @alimohammadigheidari2614 6 лет назад

    Well done Professor.

  • @flaxenkj
    @flaxenkj 3 года назад

    Thank you very much indeed.

  • @finaltheorygames1781
    @finaltheorygames1781 4 года назад

    I like the elegance in the (x+iy)^n solution, but the infinite sums with cos and sin seem to get messy.

    • @galas062
      @galas062 4 года назад

      how so?

    • @galas062
      @galas062 4 года назад

      please explain us about the mess, how you are going to clean it up???? LOL :)

  • @KanalDerGutenSache
    @KanalDerGutenSache 3 года назад +2

    Does the infinite family of b's provide you with infinite amounts of honey?

  • @robertwilsoniii2048
    @robertwilsoniii2048 6 лет назад

    Why not parametrize the boundary in a constrained optimization problem? Or are these things equivalent?

  • @erick.gudino
    @erick.gudino 4 года назад

    thank you this this very useful

  • @not_amanullah
    @not_amanullah 4 месяца назад

    This is helpful ❤️🤍

  • @qas168888
    @qas168888 10 месяцев назад

    Love love love this one😂

  • @nandha0150
    @nandha0150 5 лет назад

    Absolutely lovely.

  • @algebra5766
    @algebra5766 4 года назад

    wow this is beautiful ...

  • @not_amanullah
    @not_amanullah 4 месяца назад

    Thanks ❤️🤍

  • @iam_sketch
    @iam_sketch Год назад

    Beautiful

  • @lazykid2677
    @lazykid2677 8 лет назад

    Can someone give me the links of all the courses taken by Gilbert Strang ?(without the linear algebra course)

    • @mitocw
      @mitocw  8 лет назад +7

      A quick search on our site (ocw.mit.edu) shows these courses and materials (not including linear algebra): 2.087, 18.085, 18.086, RES.18-001, RES.18-005, RES.18-009

  • @dhanraaj
    @dhanraaj 3 года назад

    concept building thankyou

  • @dominicj7977
    @dominicj7977 4 года назад

    Psychologically, people generally find handsome young men talking about mathematics more attractive than fragile old professors. Had this video been done by Zach star or grand Sanderson, it would have won way more likes

  • @yeechi2398
    @yeechi2398 3 года назад

    미쳤따리 미쳤따 교수님의 명강에 balls를 탁 치고 갑니다!

  • @XiaosChannel
    @XiaosChannel 8 лет назад +1

    hmm, since when theres videos specifically made for... well, online videos instead of lecture recordings?

    • @ghostzart
      @ghostzart 6 лет назад

      They've made these sorts of videos since the early 1970s. Search for "OCW Herb Gross" and prepare to be amazed by the intimacy (and weird, black chalk).

  • @davidkwon1872
    @davidkwon1872 4 года назад

    I can’t believe what I watch!!! So shocked!!,

  • @اجملاغانيلاطفال
    @اجملاغانيلاطفال 2 года назад +1

    انا أشاهد هذا فيدو من الجزائر

  • @jaihind3693
    @jaihind3693 8 лет назад

    Sir Please make a vedio on E.T Whittakers 1903 Decomposition of scalar potentials, its much related to laplace equations.

  • @wagsman9999
    @wagsman9999 2 года назад

    math is beautiful

  • @truthtutorials2312
    @truthtutorials2312 3 года назад

    The infinite me's is the solution to my consciousness.

  • @libinbabu288
    @libinbabu288 2 года назад

    Studying in fisat mookanur.hope someone sees it in future

  • @_chip
    @_chip 8 лет назад

    this is just great

  • @Gravitation3Beatles3
    @Gravitation3Beatles3 7 лет назад

    Would you say this concept is hard to grasp for a high school student?

    • @omega7377
      @omega7377 7 лет назад +2

      Nope, if he or she already knows about partial derivatives, polar coordinates and eulers formula.

    • @lucasm4299
      @lucasm4299 7 лет назад

      Gravitation3Beatles3
      Nope. I'm on the same boat and I also looked into Complex Numbers.

  • @devotionalhymns845
    @devotionalhymns845 2 года назад

    Beautiful 😍

  • @Hobbit183
    @Hobbit183 7 лет назад

    i like to see it as the groundwater level in a confined aquifer with steady flow

  • @ahmedbaig7279
    @ahmedbaig7279 6 лет назад

    I also want to know the name of this professor.But my question is that at what level he teaches this peculiar subject of applied mathematics?

    • @mitocw
      @mitocw  6 лет назад

      The instructor is Gilbert Strang. He teaches at both the undergraduate and graduate levels (he's even made a special series for high school students). For more info on Gil, here is his bio page: www-math.mit.edu/~gs/

  • @hollywoodundead1010
    @hollywoodundead1010 4 года назад

    Everyone here smart as fuck, while I came looking for laplaces box from The Gundam series...

  • @terryhuang6464
    @terryhuang6464 7 лет назад

    fantastic

  • @mushtaqdass7421
    @mushtaqdass7421 5 лет назад

    ,infinite likes sir

  • @MohamedEmad-bq8hs
    @MohamedEmad-bq8hs 7 лет назад

    Brilliant

  • @mikiasaschale5824
    @mikiasaschale5824 4 года назад

    do this ,,,,,evalute the lablacian 7x^2/x^2+y^2+z^2

  • @leophysics
    @leophysics 2 года назад

    Gilbert strang is like Dr strange

  • @Griffatron3000
    @Griffatron3000 5 лет назад

    he keeps winking at me