10 ML algorithms in 45 minutes | machine learning algorithms for data science | machine learning

Поделиться
HTML-код
  • Опубликовано: 19 янв 2025

Комментарии • 230

  • @itsme1674
    @itsme1674 2 года назад +90

    Machine learning is nothing but learning pattern from a data using an algorithm. An algorithm is set of steps that are executed in an order to reach final solution.

  • @Srinivascheekati681
    @Srinivascheekati681 Год назад +18

    Hi ,This Ch Srinivas ( EX Faculty in ACE academy and currently working in MADE EASY IES, I would appreciate your teaching process . Thanks for sharing your knowledge. GOD bless you. I am planning to do PhD in Data Science please give me your valuable suggestions. Thanks

  • @naveenarunkumar95
    @naveenarunkumar95 Год назад +15

    So Easy to Understand all the concepts of ML Thank you for this

  • @muditmathur465
    @muditmathur465 Год назад +39

    Thanks, this came really handy 1 day before interview 😁👍

  • @surajitchanda1975
    @surajitchanda1975 10 месяцев назад +1

    A very good lecture to refresh my knowledge my name is Surajit Chanda i am an instrumentation engineer and also a Software Engineer

  • @swethamadhavarapu3018
    @swethamadhavarapu3018 10 месяцев назад +2

    Great video, simple easy to understand explanation for beginners. Thank you!

  • @dheenadhayalan423
    @dheenadhayalan423 Год назад +18

    All the prerequisites I was hoping for was covered and explained clearly. Thank You sir !

  • @kamaleshwaran06
    @kamaleshwaran06 Год назад +2

    Best Video for a quick introduction/refresher on ML Algorithms. Kudos!

  • @tadhailu
    @tadhailu Год назад +2

    Very important, I need to watch it again and again.

  • @godfreyuzonwanne3110
    @godfreyuzonwanne3110 5 месяцев назад

    This is a very simple demystification of a complex topic. Great job here. I love the very straight definition of machine learning presented here ... understanding patterns in the data using algorithms 🎉

  • @user-vo9kh4zd3f
    @user-vo9kh4zd3f Год назад

    this is very helpful video those who want to gain basic knowledge in ML algos
    but uh did a mistake in Gradient boost calculation in 23:44 .
    once check it

  • @hgowda11
    @hgowda11 8 месяцев назад +2

    This is an excellent and time-efficient video with a great explanation.

  • @satyagarapati3611
    @satyagarapati3611 9 месяцев назад

    Great Aman!!
    Wonderful explanation ❤

  • @ishanagpurkar
    @ishanagpurkar Год назад +1

    This is a very good video for revision of ml models.

  • @dd1278
    @dd1278 2 года назад +6

    Thanks for this..quite a critical video for everyone who's having interview (s) lined up.

  • @VinayAggarwal
    @VinayAggarwal Год назад +11

    This is super helpful. Thanks for putting this together. ❤
    Can these all work on more then 2D data ?

  • @navya-s3v
    @navya-s3v 4 месяца назад

    Artificial intelligence algorithms are vital in data science. They help computers to learn from data and generate predictions or conclusions, which are used in applications such as image recognition, natural language processing, and recommendation systems.

  • @RakiatHaruna-cx8jh
    @RakiatHaruna-cx8jh Год назад +4

    Thank you for the beautiful presentation. Could you please give an example using spatial data.

  • @explorewithskp1237
    @explorewithskp1237 2 года назад +6

    Thank U Sir . Clearly got an idea on all algorithms in very short time ☺️

  • @someshwarrao7357
    @someshwarrao7357 2 месяца назад

    Very Nicely and firmly explained the concepts and usage.

  • @romualdcieciura9902
    @romualdcieciura9902 4 месяца назад

    Suuuper. Bardzo, bardzo, bardzo dobrze wytłumaczone. Dziękuję

  • @tirupathimujjiga7912
    @tirupathimujjiga7912 4 месяца назад

    Great video meaningful and clearly explained. God bless you.

  • @pritus9537
    @pritus9537 10 месяцев назад

    Very simple and effective method of teaching all algorithms

  • @Er.Sunil.Pedgaonkar
    @Er.Sunil.Pedgaonkar Год назад

    Good -- Er. Sunil Pedgaonkar, Consulting Engineer (IT)

  • @Griffindor21
    @Griffindor21 10 месяцев назад

    Great video!
    Decision Tree can also do classification as well, right?

  • @dvabhinav31
    @dvabhinav31 9 месяцев назад

    Helped with understanding logistic regression!

  • @chandrusm-c9r
    @chandrusm-c9r Год назад

    very pretty and clear explanation .stay tuned and thanks very much buddy

  • @balajigayathribala
    @balajigayathribala 2 месяца назад

    Thanks, wonderful explanation.

  • @tbjapbtu10
    @tbjapbtu10 Год назад

    Thank u so much brother
    I am new subscriber of u r channel
    After seeing ur videos, i thought that i got some support in Learning of ML
    Ur videos are in very simple English
    Thank you brother

  • @damienlomath1766
    @damienlomath1766 5 месяцев назад

    wow very educative , perfect and practical examples makes it clear, precise and concise

  • @VISHNUPRASADSAKHAMURI
    @VISHNUPRASADSAKHAMURI Год назад +4

    Hi
    This video is very informative. thanks you so much..
    Can you suggest which algorithm is best suited for below use case
    "scan the kuberbetes pods for application exceptions and feed the algorithm.. let the model store this info along with impact assessment, to raise the alerts only for critical exception"

    • @UnfoldDataScience
      @UnfoldDataScience  Год назад +1

      Thanks For watching.yoy can research on isolation forest or random cut forest

  • @vamsivegi
    @vamsivegi Год назад +1

    Wish this kind of tutorial 5 years ago. But it’s not too late. Simply one the best.

  • @sagarambhore4677
    @sagarambhore4677 Месяц назад

    Greate teaching sir....🙏

  • @VikasVerma-xf6hb
    @VikasVerma-xf6hb Год назад

    Thank you. Very nicely explained. Kudos to you. Keep-up the good work.

    • @UnfoldDataScience
      @UnfoldDataScience  Год назад +1

      Thanks Vikas. Apne friends group me bhi share kar dijie.

  • @mahendrachauhan63
    @mahendrachauhan63 Год назад

    Nice, super Duper, you are awesome boss

  • @saramohammed5421
    @saramohammed5421 6 месяцев назад

    Thank you this is very helpful and easy to understand!

  • @sukumarane2302
    @sukumarane2302 10 месяцев назад

    Good presentation . Thanks 👍

  • @ajaykumargupta5862
    @ajaykumargupta5862 Год назад

    Great session and well explained. Thank you sir. Please create more videos to explore more.

  • @karanalang1573
    @karanalang1573 Год назад +1

    thanks for this very helpful video !

  • @pawankumarjm
    @pawankumarjm Год назад

    This is the best explanation till I saw..😊

  • @sureshkumar-cn5jr
    @sureshkumar-cn5jr Год назад +2

    Useful content Aman!
    Thanks for your efforts to teach complicated but important concepts in M L

  • @mahmoudshanshoury5643
    @mahmoudshanshoury5643 8 месяцев назад

    Thank you for the beautiful presentation.

  • @katamreddiprasad418
    @katamreddiprasad418 Год назад

    Very informative. Thank u...

  • @noormohammadatapoor3119
    @noormohammadatapoor3119 8 месяцев назад

    Both the decision tree and Random Forest also can be used in classification tasks. Therefore they cannot be limited only to regression tasks.

    • @UnfoldDataScience
      @UnfoldDataScience  8 месяцев назад

      Yes absolutely. I took that in regression category to have variation of regression models.thanks for message

  • @shivagupta2052
    @shivagupta2052 2 года назад +2

    Great session . Can you sir make a video regarding project where you apply all ml algorithm and also do model development and same for deep learning

  • @vasutke1187
    @vasutke1187 Год назад

    Sir, Ultimate Teaching Style, Sequence of arranging Topics are highly help full to us. Great

  • @Ashish_Shinde9623
    @Ashish_Shinde9623 Год назад

    Very Informative video, thank you

  • @leonine291
    @leonine291 Год назад

    زبردست ❤

  • @SethiGaneswar
    @SethiGaneswar Год назад

    Great presentation and i think this is one of the best videos on simply making understandable to the concepts. thanks for the video

  • @sachinmore8938
    @sachinmore8938 Год назад

    Great informative video. Thank you for sharing your knowledge.

  • @amoghbantwal8179
    @amoghbantwal8179 6 месяцев назад

    Hi very nice video. What is the difference between adaboost and gradient boost. As far as I am understanding it, they both have a similar algorithm with residuals that decide how the next model interprets the data

  • @sircosm
    @sircosm Год назад

    Nicely explained! Very helpful.

  • @chiragxed
    @chiragxed 4 месяца назад

    23:40
    (80+42)/3 = 122/3 = 40.6

  • @Thebeautyoftheworld1111
    @Thebeautyoftheworld1111 Год назад

    please explain base model in adaBoost . It sounds similar to M1 model. is it different from M1 model. if it is so, what is the difference. Kindly explain. But great explanation.Keep up the good work sir. God bless

  • @Paladipradeep
    @Paladipradeep 2 года назад +2

    It was indeed a great session, thanks

  • @Latif127
    @Latif127 Год назад

    It looked good to me, thank you.

  • @anthonymary1cyril5
    @anthonymary1cyril5 2 месяца назад

    thanks sir it was easy to understand

  • @tadhailu
    @tadhailu 2 месяца назад

    I like the way he explains,.

  • @NithishKumar-ng7dp
    @NithishKumar-ng7dp Год назад

    Good Explanation Sir

  • @spicytuna08
    @spicytuna08 2 года назад +1

    wow. awesome summary,

  • @happylearning-gp
    @happylearning-gp Год назад

    Excellent, Thank you very much

  • @pankajjoshi8292
    @pankajjoshi8292 Год назад

    Thank you sir , cannu pls tell how to implement these in python

    • @UnfoldDataScience
      @UnfoldDataScience  Год назад

      HI Pankaj, if you go to playlist section, you will find all the implementation as part of different playlists :)

  • @ratheeshmsuresh7368
    @ratheeshmsuresh7368 Год назад +2

    Brother, Please help to get clarity for the Below Questions,
    First Question :
    check whether The average monthly hours of a employee having 2 years experience is 167.
    What will be the Null and Alternative Hypothesis that I should Consider?

    • @UnfoldDataScience
      @UnfoldDataScience  Год назад

      Can be framed in multiple ways

    • @uditi_
      @uditi_ Год назад

      null can be “…it is 167” and alternative can be it is not, then you can prove or disprove null hypothesis

  • @vishsara
    @vishsara 6 месяцев назад

    very useful video, thanks

  • @ganeshsubramanian6217
    @ganeshsubramanian6217 Год назад

    Very good explanation Aman🎉

  • @researchhub2727
    @researchhub2727 7 месяцев назад

    Excellent sir 🎉

  • @CodeWonders_
    @CodeWonders_ Год назад +2

    At Starting you said wrong because random Forest and decision tree can be used for both

    • @UnfoldDataScience
      @UnfoldDataScience  Год назад

      Not sure which part of the video I said it. Both can be used for classification and regression scenarios.

  • @e4skitv
    @e4skitv 3 месяца назад

    Thanks . I just subscribed

  • @swwapnas8741
    @swwapnas8741 4 месяца назад

    nice way of teaching

  • @Learn_IT_with_Azizul
    @Learn_IT_with_Azizul Год назад

    Great. please keep up with e-commerce projects in ML practices. Ty

  • @lakshmanthota8902
    @lakshmanthota8902 8 месяцев назад

    Very handy for a quick recall

  • @buttterflygirl
    @buttterflygirl Год назад

    Need your help understanding a scenario where the OA and kappa coefficient are more or less similar on test and validation datasets when using only one independent variable. Here, the validation dataset meaning completely a new dataset in time and space. Train and Test belong to same time and space. Can you explain to me why this is? I appreciate your help on this. When run with a few more variables, this issue is not showing up.
    For more understanding, Train and Test are from same day satellite image for city A. Validation dataset is from different day satellite image for City B.

  • @DataScienceWallah
    @DataScienceWallah Год назад

    That's very well explained highly appreciate the content ❤❤❤

  • @kennethstephani692
    @kennethstephani692 Год назад

    Great video!!

  • @upadisetty
    @upadisetty 5 месяцев назад

    great stuff, thanks

  • @raghuyadav1406
    @raghuyadav1406 Год назад

    Hi, do you have implementation examples for all these, i think decision tree, random forest available but others not, also you cover support vector, k nearest etc..

  • @kishorrawat8083
    @kishorrawat8083 2 года назад

    Great lecture.... 👌👍

  • @robotdream8355
    @robotdream8355 Год назад

    Really its amazing. Do you have any udemy course?

    • @UnfoldDataScience
      @UnfoldDataScience  Год назад +1

      Thanks Robert, please check here www.unfolddatascience.com

  • @naineshkhanjire
    @naineshkhanjire Год назад +1

    what is beta in logistic regression
    ?

  • @ishaqmuhammadabubakar3308
    @ishaqmuhammadabubakar3308 3 месяца назад

    Nice one thanks

  • @Marklodhi420
    @Marklodhi420 Год назад

    Exceptional stuff.

  • @kanoriopurity4374
    @kanoriopurity4374 Год назад

    very well detailed great content

  • @rafibasha4145
    @rafibasha4145 2 года назад +1

    Thanks for the video ,pls cover Naive bayes ,XGboost catboost dbscan hierarchical clustering in one hour video and all stats in 2 to 3 videos also dl nlp imp concepts in 1 hour length video s

  • @Dropella
    @Dropella 2 года назад

    this is best I have seen ever

  • @anishvarughese9517
    @anishvarughese9517 11 месяцев назад

    Explained well

  • @divyasri9529
    @divyasri9529 Месяц назад

    helpful👍

  • @khanyijiyane1585
    @khanyijiyane1585 Год назад

    Really big thank you❤

  • @talentzunlimited1398
    @talentzunlimited1398 Год назад

    Very helpful !

  • @satishb9975
    @satishb9975 Год назад

    Thank you 🎉❤ excellent 👍

  • @joachimguth6226
    @joachimguth6226 Год назад

    Are 9 and 10 not classification problems as well?

  • @pramethicine9328
    @pramethicine9328 Год назад

    Amazing video will let you know if I pass the interview 😂🙏🏼

  • @masoudmirzakhanloo8059
    @masoudmirzakhanloo8059 Год назад

    awesome 👌

  • @Manoj151267
    @Manoj151267 5 месяцев назад

    Just scratches the surface - OK for someone who has a working knowledge and needs to brush up. A bit of a lazy presentation - at 28:00 minutes, age & salary can go from +infinity to -infinity!!

  • @storiesshubham4145
    @storiesshubham4145 Год назад

    Liked it even before watching

  • @rajpandim
    @rajpandim Год назад

    Excellent explanation

  • @AshisRaj
    @AshisRaj Год назад

    Aman bhaiya I am too from CEB bhubaneswar. I hope you remember

    • @UnfoldDataScience
      @UnfoldDataScience  Год назад +1

      Hi Ashis, good that you messaged, yes I do. Please mail me at unfolddatascience@gmail.com

    • @AshisRaj
      @AshisRaj Год назад

      @@UnfoldDataScience bhaiya "please" KAHE bol rahe hai. Acha lga apka growth dekh kar😀

  • @Jordi5720
    @Jordi5720 Год назад

    super useful

  • @azhrhasan
    @azhrhasan Год назад

    Decision tree seems like a moving average. How is it different from moving average?

    • @UnfoldDataScience
      @UnfoldDataScience  Год назад

      Decision tree is not moving average, it's about finding best split.

  • @SuperMoorthy
    @SuperMoorthy 10 месяцев назад

    Good, i am first time watching, very understandable.

  • @userhandle-u7b
    @userhandle-u7b Год назад +1

    Thanks a lot for this. Very helpful! I was a bit lost at a few points such as Ada Boost & Log Regression. But that's efficient for a starter. 👍👍👍