10 ML algorithms in 45 minutes | machine learning algorithms for data science | machine learning

Поделиться
HTML-код
  • Опубликовано: 24 ноя 2024

Комментарии • 234

  • @muditmathur465
    @muditmathur465 Год назад +36

    Thanks, this came really handy 1 day before interview 😁👍

  • @naveenarunkumar95
    @naveenarunkumar95 Год назад +13

    So Easy to Understand all the concepts of ML Thank you for this

  • @Srinivascheekati681
    @Srinivascheekati681 Год назад +15

    Hi ,This Ch Srinivas ( EX Faculty in ACE academy and currently working in MADE EASY IES, I would appreciate your teaching process . Thanks for sharing your knowledge. GOD bless you. I am planning to do PhD in Data Science please give me your valuable suggestions. Thanks

  • @surajitchanda1975
    @surajitchanda1975 8 месяцев назад

    A very good lecture to refresh my knowledge my name is Surajit Chanda i am an instrumentation engineer and also a Software Engineer

  • @swethamadhavarapu3018
    @swethamadhavarapu3018 8 месяцев назад +2

    Great video, simple easy to understand explanation for beginners. Thank you!

  • @itsme1674
    @itsme1674 Год назад +80

    Machine learning is nothing but learning pattern from a data using an algorithm. An algorithm is set of steps that are executed in an order to reach final solution.

  • @dheenadhayalan423
    @dheenadhayalan423 Год назад +18

    All the prerequisites I was hoping for was covered and explained clearly. Thank You sir !

  • @tadhailu
    @tadhailu Год назад +2

    Very important, I need to watch it again and again.

  • @Er.Sunil.Pedgaonkar
    @Er.Sunil.Pedgaonkar Год назад

    Good -- Er. Sunil Pedgaonkar, Consulting Engineer (IT)

  • @pritus9537
    @pritus9537 8 месяцев назад

    Very simple and effective method of teaching all algorithms

  • @godfreyuzonwanne3110
    @godfreyuzonwanne3110 3 месяца назад

    This is a very simple demystification of a complex topic. Great job here. I love the very straight definition of machine learning presented here ... understanding patterns in the data using algorithms 🎉

  • @someshwarrao7357
    @someshwarrao7357 16 дней назад

    Very Nicely and firmly explained the concepts and usage.

  • @user-vo9kh4zd3f
    @user-vo9kh4zd3f Год назад

    this is very helpful video those who want to gain basic knowledge in ML algos
    but uh did a mistake in Gradient boost calculation in 23:44 .
    once check it

  • @explorewithskp1237
    @explorewithskp1237 Год назад +6

    Thank U Sir . Clearly got an idea on all algorithms in very short time ☺️

  • @kamaleshwaran06
    @kamaleshwaran06 Год назад +2

    Best Video for a quick introduction/refresher on ML Algorithms. Kudos!

  • @hgowda11
    @hgowda11 6 месяцев назад +2

    This is an excellent and time-efficient video with a great explanation.

  • @ishanagpurkar
    @ishanagpurkar Год назад +1

    This is a very good video for revision of ml models.

  • @navya-s3v
    @navya-s3v 2 месяца назад

    Artificial intelligence algorithms are vital in data science. They help computers to learn from data and generate predictions or conclusions, which are used in applications such as image recognition, natural language processing, and recommendation systems.

  • @dd1278
    @dd1278 Год назад +6

    Thanks for this..quite a critical video for everyone who's having interview (s) lined up.

  • @romualdcieciura9902
    @romualdcieciura9902 2 месяца назад

    Suuuper. Bardzo, bardzo, bardzo dobrze wytłumaczone. Dziękuję

  • @vamsivegi
    @vamsivegi Год назад +1

    Wish this kind of tutorial 5 years ago. But it’s not too late. Simply one the best.

  • @tirupathimujjiga7912
    @tirupathimujjiga7912 2 месяца назад

    Great video meaningful and clearly explained. God bless you.

  • @dvabhinav31
    @dvabhinav31 7 месяцев назад

    Helped with understanding logistic regression!

  • @RakiatHaruna-cx8jh
    @RakiatHaruna-cx8jh Год назад +4

    Thank you for the beautiful presentation. Could you please give an example using spatial data.

  • @damienlomath1766
    @damienlomath1766 3 месяца назад

    wow very educative , perfect and practical examples makes it clear, precise and concise

  • @satyagarapati3611
    @satyagarapati3611 7 месяцев назад

    Great Aman!!
    Wonderful explanation ❤

  • @JayanandanT
    @JayanandanT 11 месяцев назад

    Very good Video. As a beginner i understood the basics well. Definitely will recommend to my students. Thankyou for the effort you put into the Presentation.

    • @UnfoldDataScience
      @UnfoldDataScience  11 месяцев назад

      So nice of you. Please share with friends as well. Welcome to Unfold data science family :)

  • @balajigayathribala
    @balajigayathribala 18 дней назад

    Thanks, wonderful explanation.

  • @noormohammadatapoor3119
    @noormohammadatapoor3119 6 месяцев назад

    Both the decision tree and Random Forest also can be used in classification tasks. Therefore they cannot be limited only to regression tasks.

    • @UnfoldDataScience
      @UnfoldDataScience  6 месяцев назад

      Yes absolutely. I took that in regression category to have variation of regression models.thanks for message

  • @VinayAggarwal
    @VinayAggarwal Год назад +11

    This is super helpful. Thanks for putting this together. ❤
    Can these all work on more then 2D data ?

  • @tadhailu
    @tadhailu 12 дней назад

    I like the way he explains,.

  • @chandrusm-c9r
    @chandrusm-c9r Год назад

    very pretty and clear explanation .stay tuned and thanks very much buddy

  • @saramohammed5421
    @saramohammed5421 4 месяца назад

    Thank you this is very helpful and easy to understand!

  • @anthonymary1cyril5
    @anthonymary1cyril5 27 дней назад

    thanks sir it was easy to understand

  • @karanalang1573
    @karanalang1573 Год назад +1

    thanks for this very helpful video !

  • @sukumarane2302
    @sukumarane2302 8 месяцев назад

    Good presentation . Thanks 👍

  • @tbjapbtu10
    @tbjapbtu10 Год назад

    Thank u so much brother
    I am new subscriber of u r channel
    After seeing ur videos, i thought that i got some support in Learning of ML
    Ur videos are in very simple English
    Thank you brother

  • @Latif127
    @Latif127 Год назад

    It looked good to me, thank you.

  • @lakshmanthota8902
    @lakshmanthota8902 7 месяцев назад

    Very handy for a quick recall

  • @mahmoudshanshoury5643
    @mahmoudshanshoury5643 6 месяцев назад

    Thank you for the beautiful presentation.

  • @pawankumarjm
    @pawankumarjm Год назад

    This is the best explanation till I saw..😊

  • @mahendrachauhan63
    @mahendrachauhan63 Год назад

    Nice, super Duper, you are awesome boss

  • @swwapnas8741
    @swwapnas8741 3 месяца назад

    nice way of teaching

  • @SethiGaneswar
    @SethiGaneswar Год назад

    Great presentation and i think this is one of the best videos on simply making understandable to the concepts. thanks for the video

  • @leonine291
    @leonine291 Год назад

    زبردست ❤

  • @NithishKumar-ng7dp
    @NithishKumar-ng7dp Год назад

    Good Explanation Sir

  • @ajaykumargupta5862
    @ajaykumargupta5862 Год назад

    Great session and well explained. Thank you sir. Please create more videos to explore more.

  • @researchhub2727
    @researchhub2727 5 месяцев назад

    Excellent sir 🎉

  • @shivagupta2052
    @shivagupta2052 Год назад +2

    Great session . Can you sir make a video regarding project where you apply all ml algorithm and also do model development and same for deep learning

  • @vasutke1187
    @vasutke1187 Год назад

    Sir, Ultimate Teaching Style, Sequence of arranging Topics are highly help full to us. Great

  • @katamreddiprasad418
    @katamreddiprasad418 Год назад

    Very informative. Thank u...

  • @sureshkumar-cn5jr
    @sureshkumar-cn5jr 11 месяцев назад +2

    Useful content Aman!
    Thanks for your efforts to teach complicated but important concepts in M L

  • @vishsara
    @vishsara 4 месяца назад

    very useful video, thanks

  • @ishaqmuhammadabubakar3308
    @ishaqmuhammadabubakar3308 Месяц назад

    Nice one thanks

  • @VISHNUPRASADSAKHAMURI
    @VISHNUPRASADSAKHAMURI Год назад +4

    Hi
    This video is very informative. thanks you so much..
    Can you suggest which algorithm is best suited for below use case
    "scan the kuberbetes pods for application exceptions and feed the algorithm.. let the model store this info along with impact assessment, to raise the alerts only for critical exception"

    • @UnfoldDataScience
      @UnfoldDataScience  Год назад +1

      Thanks For watching.yoy can research on isolation forest or random cut forest

  • @Ashish_Shinde9623
    @Ashish_Shinde9623 Год назад

    Very Informative video, thank you

  • @VikasVerma-xf6hb
    @VikasVerma-xf6hb Год назад

    Thank you. Very nicely explained. Kudos to you. Keep-up the good work.

    • @UnfoldDataScience
      @UnfoldDataScience  Год назад +1

      Thanks Vikas. Apne friends group me bhi share kar dijie.

  • @chiragxed
    @chiragxed 2 месяца назад

    23:40
    (80+42)/3 = 122/3 = 40.6

  • @happylearning-gp
    @happylearning-gp Год назад

    Excellent, Thank you very much

  • @chandrasekhar_m
    @chandrasekhar_m Год назад

    best video for quick revision !! tq ..Aman '

  • @Griffindor21
    @Griffindor21 8 месяцев назад

    Great video!
    Decision Tree can also do classification as well, right?

  • @e4skitv
    @e4skitv Месяц назад

    Thanks . I just subscribed

  • @upadisetty
    @upadisetty 3 месяца назад

    great stuff, thanks

  • @Paladipradeep
    @Paladipradeep Год назад +2

    It was indeed a great session, thanks

  • @spicytuna08
    @spicytuna08 Год назад +1

    wow. awesome summary,

  • @anishvarughese9517
    @anishvarughese9517 9 месяцев назад

    Explained well

  • @Thebeautyoftheworld1111
    @Thebeautyoftheworld1111 Год назад

    please explain base model in adaBoost . It sounds similar to M1 model. is it different from M1 model. if it is so, what is the difference. Kindly explain. But great explanation.Keep up the good work sir. God bless

  • @bushraaijaz2125
    @bushraaijaz2125 Год назад +1

    Seven ML Classifiers with python using colab: ruclips.net/video/1c8Pi0rh-oQ/видео.html

  • @divyasri9529
    @divyasri9529 День назад

    helpful👍

  • @sircosm
    @sircosm Год назад

    Nicely explained! Very helpful.

  • @sachinmore8938
    @sachinmore8938 Год назад

    Great informative video. Thank you for sharing your knowledge.

  • @Jordi5720
    @Jordi5720 10 месяцев назад

    super useful

  • @Learn_IT_with_Azizul
    @Learn_IT_with_Azizul Год назад

    Great. please keep up with e-commerce projects in ML practices. Ty

  • @amoghbantwal8179
    @amoghbantwal8179 4 месяца назад

    Hi very nice video. What is the difference between adaboost and gradient boost. As far as I am understanding it, they both have a similar algorithm with residuals that decide how the next model interprets the data

  • @ganeshsubramanian6217
    @ganeshsubramanian6217 Год назад

    Very good explanation Aman🎉

  • @storiesshubham4145
    @storiesshubham4145 Год назад

    Liked it even before watching

  • @masoudmirzakhanloo8059
    @masoudmirzakhanloo8059 Год назад

    awesome 👌

  • @userhandle-u7b
    @userhandle-u7b Год назад +1

    Thanks a lot for this. Very helpful! I was a bit lost at a few points such as Ada Boost & Log Regression. But that's efficient for a starter. 👍👍👍

  • @DataScienceWallah
    @DataScienceWallah Год назад

    That's very well explained highly appreciate the content ❤❤❤

  • @rafibasha4145
    @rafibasha4145 Год назад +1

    Thanks for the video ,pls cover Naive bayes ,XGboost catboost dbscan hierarchical clustering in one hour video and all stats in 2 to 3 videos also dl nlp imp concepts in 1 hour length video s

  • @smegala3815
    @smegala3815 Год назад +1

    Thank you sir

  • @Marklodhi420
    @Marklodhi420 Год назад

    Exceptional stuff.

  • @kennethstephani692
    @kennethstephani692 Год назад

    Great video!!

  • @pankajjoshi8292
    @pankajjoshi8292 Год назад

    Thank you sir , cannu pls tell how to implement these in python

    • @UnfoldDataScience
      @UnfoldDataScience  Год назад

      HI Pankaj, if you go to playlist section, you will find all the implementation as part of different playlists :)

  • @satishb9975
    @satishb9975 Год назад

    Thank you 🎉❤ excellent 👍

  • @NurserytoVarsity
    @NurserytoVarsity Год назад

    You're making education engaging and accessible for everyone. #NurserytoVarsity

  • @khanyijiyane1585
    @khanyijiyane1585 Год назад

    Really big thank you❤

  • @CodeWonders_
    @CodeWonders_ Год назад +2

    At Starting you said wrong because random Forest and decision tree can be used for both

    • @UnfoldDataScience
      @UnfoldDataScience  Год назад

      Not sure which part of the video I said it. Both can be used for classification and regression scenarios.

  • @talentzunlimited1398
    @talentzunlimited1398 Год назад

    Very helpful !

  • @pramethicine9328
    @pramethicine9328 Год назад

    Amazing video will let you know if I pass the interview 😂🙏🏼

  • @ratheeshmsuresh7368
    @ratheeshmsuresh7368 Год назад +2

    Brother, Please help to get clarity for the Below Questions,
    First Question :
    check whether The average monthly hours of a employee having 2 years experience is 167.
    What will be the Null and Alternative Hypothesis that I should Consider?

    • @UnfoldDataScience
      @UnfoldDataScience  Год назад

      Can be framed in multiple ways

    • @uditi_
      @uditi_ Год назад

      null can be “…it is 167” and alternative can be it is not, then you can prove or disprove null hypothesis

  • @Dropella
    @Dropella Год назад

    this is best I have seen ever

  • @kanoriopurity4374
    @kanoriopurity4374 Год назад

    very well detailed great content

  • @kishorrawat8083
    @kishorrawat8083 Год назад

    Great lecture.... 👌👍

  • @thelife1919
    @thelife1919 Год назад

    Thank you

  • @omkarbelpatre5
    @omkarbelpatre5 Год назад

    Thank you so much sir

  • @buttterflygirl
    @buttterflygirl Год назад

    Need your help understanding a scenario where the OA and kappa coefficient are more or less similar on test and validation datasets when using only one independent variable. Here, the validation dataset meaning completely a new dataset in time and space. Train and Test belong to same time and space. Can you explain to me why this is? I appreciate your help on this. When run with a few more variables, this issue is not showing up.
    For more understanding, Train and Test are from same day satellite image for city A. Validation dataset is from different day satellite image for City B.

  • @rajpandim
    @rajpandim Год назад

    Excellent explanation

  • @bushraaijaz2125
    @bushraaijaz2125 Год назад

    Helpful tutorial (y)

  • @Manoj151267
    @Manoj151267 3 месяца назад

    Just scratches the surface - OK for someone who has a working knowledge and needs to brush up. A bit of a lazy presentation - at 28:00 minutes, age & salary can go from +infinity to -infinity!!