Gaussian Integral [Int{e^-x^2} from -inf to inf]

Поделиться
HTML-код
  • Опубликовано: 10 фев 2025
  • In this video, I showed how to integrate e^-x^2 from -infinity to infinity and get sqrt pi as answer

Комментарии • 45

  • @znhait
    @znhait Год назад +33

    Great explanation. One wouldn’t even need to know multivariable calculus to understand this.

  • @lukaskamin755
    @lukaskamin755 8 месяцев назад +20

    Would be interesting to recollect how Jacobian is introduced, and how it's inferred in general

  • @briandong7584
    @briandong7584 6 месяцев назад +3

    Very smart. The result sqrt(pi) is related to circle or polar coordinates. Coordinates conversion simplifies the solution.

  • @Josedepalmares
    @Josedepalmares 2 месяца назад +1

    Very elegant solutions. Congratulations!!!

  • @BernardoLameiras
    @BernardoLameiras 5 месяцев назад +1

    Your explanations are perfect!

  • @Roydrigo100
    @Roydrigo100 9 месяцев назад +3

    The Best! I'm a Brazilian fan!

  • @kingbeauregard
    @kingbeauregard Год назад +5

    I remember when I thought this technique smacked of trickery. Then I learned of Feynmann's technique and the world stopped making sense altogether.

  • @chaosforever
    @chaosforever 2 месяца назад +1

    best explanation video so far however i think it would have been better to show change of variables more in depth using jacobian

  • @rhc-weinkontore.k.7118
    @rhc-weinkontore.k.7118 2 месяца назад

    good job! Gauss would have loved this

  • @mathdodo3743
    @mathdodo3743 Месяц назад

    Very smart. Great explanation.

  • @masoudhabibi700
    @masoudhabibi700 Год назад +3

    For the first person tanks for an other video ..teacher

  • @hozeluii1566
    @hozeluii1566 2 месяца назад

    Bravo !!!!!
    Very good, Sir.

  • @tcmxiyw
    @tcmxiyw 6 месяцев назад

    Great explanation and blackboard technique!

  • @costelnica3988
    @costelnica3988 Год назад

    Respect! Multumesc din Romania!

  • @renesperb
    @renesperb 6 месяцев назад

    This is really the way to do it !

  • @DRakont1
    @DRakont1 7 месяцев назад +1

    Ur greatest funny mathematican

  • @kemalbarishatipoglu1714
    @kemalbarishatipoglu1714 8 месяцев назад

    You are so so great guy!! Thank you :))

  • @prakashlakhapate1598
    @prakashlakhapate1598 7 месяцев назад

    Thanks for arranging this.

  • @HMS_GMS
    @HMS_GMS 4 месяца назад

    I know this sounds like a silly question but how did you get to understand such situations in math? Was simply reading the textbook helpful/did you need to read or procure other resources? How did you find them and know the difference between what would be helpful vs what would not? Thanks a lot, fascinating video as always.

  • @Aelcyx
    @Aelcyx 5 месяцев назад

    Great videos!

  • @WingedShell82
    @WingedShell82 9 месяцев назад

    when you said the jacobian could be shown in a different video, I got sad cause that's what I wanted to see lol
    otherwise, this was cool to watch :)
    I've used the gaussian integral a bit recently in my physics classes, but never really knew where it came from.
    Also, sqrt(pi)/2 is (1/2)! I assume they're related.

  • @creslucas5357
    @creslucas5357 9 месяцев назад

    Great explanation!

  • @marcinandrzejak7155
    @marcinandrzejak7155 9 месяцев назад

    One thing that is passed without saying explicitly is that Z is an integer in this derivation. This is therefore not a general definition

  • @carlosfox8201
    @carlosfox8201 9 месяцев назад

    Bless You!

  • @nickzadeh7082
    @nickzadeh7082 7 месяцев назад

    Recently is solved by Double integral and transfer it to polar ordinance and no need use IxI ?

  • @physicsclasswithputisir5594
    @physicsclasswithputisir5594 7 месяцев назад

    Great❤

  • @blueschase11
    @blueschase11 3 месяца назад

    What does e have to do with e^-infinity like any value to ^-infinity is 0

  • @akeredoluoluwasogo9654
    @akeredoluoluwasogo9654 5 месяцев назад

    Does that mean I have to watch like 2 other videos just to understand the full concept?

  • @omarmagdi2732
    @omarmagdi2732 9 месяцев назад

    Yoooooo.... super cool

  • @AliBaba-z3t9w
    @AliBaba-z3t9w 4 месяца назад

    Is the derivative of pi equal e?

  • @prakashlakhapate1598
    @prakashlakhapate1598 7 месяцев назад +3

    Prove that dx.dy=rdr.d(Theta)

  • @mrrandom.
    @mrrandom. 25 дней назад +1

    why is -1/2 -1=1/2 i dont know anyone tell me

  • @gopikomanduri8658
    @gopikomanduri8658 Месяц назад

    tootoo good.

  • @joelmacinnes2391
    @joelmacinnes2391 11 месяцев назад +1

    I saw a sped up proof of this and it was going into matrices and all sorts, has anyone come across that before?

    • @j3y445
      @j3y445 9 месяцев назад

      The matrix was likely used to compute the Jacobian. The determinant of the Jacobian matrix yields the scale factor of the linear transformation essentially.

    • @hiuyeungchow9874
      @hiuyeungchow9874 2 месяца назад

      That's probably calculating the Jacobian, the scale factor of different units in integral (dA = dxdy = |J| drdTheta).
      So in multivariable integral, we can change the original units (dx dy) into whatever other units we feel convenient (dr dTheta in this case). We can treat dr and dTheta as vectors, dx and dy as linear combinations of them (dx = a*dr + b*dTheta, dy = c*dr + d d*Theta) using partial derivatives (a = partial x/partial r, etc.).
      Then we get dA(change of area, or the area of parallelogram formed by dx and dy) in terms of drdTheta, by putting the 2 vectors into a matrix and calculate its determinant (i.e. ad - bc for a 2x2 matrix).
      By x=rcosTheta and y=rsinTheta, you can calculate the partial derivatives and the determinant to get r or -r depending on whether you calculate partial r or partial Theta first, since an area must be positive, we take the abs value of the results (|-r| = r). Therefore, we get dA = dxdy = rdrdTheta.
      Using the same method, you can change cartesian coordinates into cylindrical and spherical systems in triple integrals as dV = dzdydx = rdzdrdTheta = Rho^2 sinPhi dRhodThetadPhi as well, just remember to change the integral bounds using our new terms (in this video, [-inf,inf],[-inf,inf] -> [0,2pi],[0,inf] ).

  • @ИринаРзаева-ф2с
    @ИринаРзаева-ф2с 5 месяцев назад +1

    Из 3,14 а частицы начинают с 2.

  • @mazenzidieh
    @mazenzidieh Месяц назад

    thanks

  • @osvaldondara605
    @osvaldondara605 Год назад +2

    How can I integrate (1/(1+e^x))dx

    • @znhait
      @znhait Год назад +2

      Multiply both the numerator and the denominator by e^(-x), equivalent to multiplying by 1. After that, a substitution will be very obvious.

    • @PrimeNewtons
      @PrimeNewtons  Год назад +1

      ruclips.net/video/hUIfJt4k0Hg/видео.html

    • @carultch
      @carultch Год назад

      @@znhait You're right, a substitution did become obvious.

  • @adw1z
    @adw1z Месяц назад

    dx dy = | ∂(x,y)/∂(r,t) | dr dt . Matrix J:
    ∂x/∂r = cos(t) = J(1,1)
    ∂x/∂t = -rsin(t) = J(1,2)
    ∂y/∂r = sin(t) = J(2,1)
    ∂y/∂t = rcos(t) = J(2,2)
    ==> | ∂(x,y)/∂(r,t) | == | detJ |
    = | cos(t)*rcos(t) - (-rsin(t) sin(t)) |
    = | rcos²(t) + rsin²(t) | = r
    ==> dx dy = r dr dt