Resolvendo Um Sistema De Três Equações Com Frações

Поделиться
HTML-код
  • Опубликовано: 4 фев 2025

Комментарии • 13

  • @wagnerotto3217
    @wagnerotto3217 10 дней назад +1

    🌟🌟🌟🌟🌟

  • @eliseupacini6720
    @eliseupacini6720 10 дней назад +1

    Inteligente solução!
    Parabéns!

  • @everaldosoareseveraldo8528
    @everaldosoareseveraldo8528 10 дней назад +1

    Ótima explicação do professor Reginaldo sou fã desse professor nota mil.

  • @luizdonizet4364
    @luizdonizet4364 10 дней назад

    Sempre muito ótimo!!!!

  • @janderlangomes2237
    @janderlangomes2237 10 дней назад +1

    Obrigado professor Reginaldo. Questão muito boa.

  • @tiaozinho3551
    @tiaozinho3551 8 дней назад

    Muito bom.

  • @misylos
    @misylos 10 дней назад +1

    Top!!

  • @Caloteira1665
    @Caloteira1665 8 дней назад

    Muito facil

  • @josepar1969
    @josepar1969 10 дней назад

    Professor duvida: o vlr do y n seria positivo 9/14 ??

    • @MatheusSouza-lw9wv
      @MatheusSouza-lw9wv 10 дней назад

      1/y = -14/9, eleva ambos os lados a -1, isso vai dar (1/y)^(-1) = (-14/9)^(-1), y = -9/14, o sinal de negativo não é nem do 9 e nem do 14, mas da fração. Por isso que o valor de y é negativo.

    • @MatheusSouza-lw9wv
      @MatheusSouza-lw9wv 10 дней назад

      tua confusão pode vir do fato dele ter "passado pro outro lado", né? aí inverte o sinal. No entanto, isso só pra vale pra adição e subtração, no caso da multiplicação e da divisão, você faz apenas a operação inversa. O que está dividindo passa multiplicando, e o que está multiplicando, passa dividindo, sem alterar o sinal, para mudar o sinal de uma multiplicação ou divisão, deve-se multiplicar ambos os lados por -1.
      essa "passa pro outro lado" se dá por causa do axioma da igualdade:
      Reflexividade: Para qualquer número ou expressão a=a. Ou seja, qualquer objeto é igual a si mesmo.
      Simetria: Se a=b, então 𝑏=𝑎. Isso significa que, se um objeto é igual a outro, o segundo objeto é igual ao primeiro.
      Transitividade: Se 𝑎=𝑏 e 𝑏=𝑐, então 𝑎=𝑐. Se um objeto é igual a um segundo, e o segundo é igual a um terceiro, então o primeiro é igual ao terceiro.
      o que implica que se tu tem um caso a=a, se tu alterar um lado, tu tem que alterar o outro na mesma proporção, para que o axioma se mantenha verdadeiro. Então se tu tem a=a e tu quer subtrair um determinado k, tu faz a-k=a-k. Assim, por exemplo, se temos 5+x=3, subtraímos 5 de ambos os lados para isolarmos x e encontrarmos o seu valor, mas o subtraímos apenas porque ele está somando com x, se ele estivesse subtraindo, como no caso x-5=3, aí nós somaríamos 5.
      5+x=3, 5+x-5=3-5, x = -2
      x-5=3, x-5+5=3+5, x=8
      é por isso que se fala "passa pro outro lado e muda o sinal", porque se omite essa parte de operacionalizar ambos os lados.
      no caso da multiplicação ou divisão, digamos que: ax=b e que temos x/b=a. Para isolarmos o x de um lado da equação, temos que usar as operações inversas ao que acontece de um lado:
      ax=b, divide ambos os lados por a, assim fica: ax/a = b/a, na primeira parte corta a com a, pois multiplicar um número por a e dividir por a, é a mesma coisa que não fazer nada, assim ficamos que: x=b/a.
      no caso, x/b=a, o inverso de dividir é multiplicar, então fazemos: b*x/b = b*a, x=b*a.
      aí 'b' e 'a' podem ser qualquer número, exceto 0, a depender da equação. Essencialmente é por esse motivo que não se alterou ao valor de -14 quando ele passou dividindo, porque dividimos ambos os lados por -14.
      aí tipo, tu pode estar se perguntando "mas tu elevou ambos os lados a -1" e eu posso fazer isso, desde que eu preserve a igualdade e a mantenha verdadeira, ou seja, se eu elevasse só 1 lado a -1, aí sim eu transformaria a igualdade numa sentença falsa. Espero que tenha entendido.