What are Lead Lag Compensators? An Introduction.

Поделиться
HTML-код
  • Опубликовано: 7 ноя 2024

Комментарии • 213

  • @joannqiongnachen9849
    @joannqiongnachen9849 5 лет назад +316

    It's 2019, and I know you're still saving lives.

    • @ooloncolluphid9975
      @ooloncolluphid9975 4 года назад +2

      he is 😂

    • @isn8103
      @isn8103 4 года назад +3

      Definitely!

    • @Greg-It
      @Greg-It 4 года назад +11

      It's 2020, and I know hes still saving lives.

    • @arvinderbali
      @arvinderbali 3 года назад +14

      And it's 2021

    • @chibi3819
      @chibi3819 3 года назад +2

      Its 2021 and he's helping me with my electrical engineering finals

  • @divyabharathi-bo5og
    @divyabharathi-bo5og 6 лет назад +86

    Every college needs lecturers like you who concentrate on the concepts rather than making us score in our exams with their crude methods! Thank you Brian!

  • @BrianBDouglas
    @BrianBDouglas  11 лет назад +12

    Oh man you're telling me! I was upset how poorly that dark blue recorded but by the time I went to edit the video it was way too late. I'm not using that color again:) Thanks for the comment!

  • @eyasal-rawi8625
    @eyasal-rawi8625 Год назад +12

    It's 2023 ,and i know you're still saving lives

  • @muratadyaman5488
    @muratadyaman5488 9 лет назад +103

    i passed the exam fundamental of control systems :) thank you brian douglas

  • @JDanger_
    @JDanger_ 3 года назад +1

    My professor linked to this video from a lecture as a supplement, and I can see why. Wonderfully helpful good sir!

  • @ismailhossain9495
    @ismailhossain9495 7 лет назад +1

    You are a Universal teacher and I am your Universal Students. Excellent and lucid Lectures. Hope our teachers are like you.

  • @sealedwings6788
    @sealedwings6788 5 лет назад +17

    Oh my god. I'm a senior Aerospace Eng. bachelor. This channel is gold. Learning here more than in my univ!

    • @chichkoliobopitko894
      @chichkoliobopitko894 3 года назад

      It's same with my uni. I'm learning "Automation", literally.

  • @darvatt
    @darvatt 11 лет назад +18

    Thank you so much, Brian. I am currently studying 3rd year Mechanical Engineering, and have lost my interest in Engineering due to poor lectures. However, after seeing your videos, I am more motivated and inspired to study Engineering now, and realise how amazing Engineering is. Hopefully, you can expand your good work, make it 'big' like Khan Academy one day. Wish you all the best!

    • @mechguy118
      @mechguy118 Год назад +1

      I'm currently 2nd year master's student. You watched it 9 years ago! How's the stuff now as an engineer!?

    • @petrevandermerwe60
      @petrevandermerwe60 Год назад

      @@mechguy118 I'm a working aerospace control engineer and I still revisit his videos. Very relevant, very useful!

  • @mohamedabdelkader8786
    @mohamedabdelkader8786 5 лет назад +2

    I'm returning for your videos from time to time to refresh my knowledge and understand things at work. Thanks Brian!

  • @alirezaghaderi
    @alirezaghaderi 4 года назад

    Its been almost 6 years since I started to know Control systems. Since then Whenever I need a refresh or forget sth I come back to your video... You are the best sir... Always helpful and always I learn sth new..Thanks and Good Luck

  • @JohnSmith-ed1sr
    @JohnSmith-ed1sr 8 лет назад +5

    Thank you Brian! Learned more from you in 11 minutes then 12 weeks in class! Was happy to donate to your book.
    Thanks again!

  • @Ropsch
    @Ropsch 11 лет назад +3

    Brian, I am perfectly happy with the quick math, you have great talent to squeeze a whole lecture into my attention span. As a student I have plenty of examples to practice the math by myself.
    Your videos give me deeper understanding and motivation.
    Thank you a lot!

  • @kvasios
    @kvasios 4 года назад +1

    As a practicing engineer that was refreshing indeed! Thanks Brian, much appreciated.

  • @19hashan93
    @19hashan93 11 лет назад +6

    Brilliant Lecture. As Usual... Once again, you fixed the big mess I had in my head. Thanks a Million.

  • @aeytam
    @aeytam 3 года назад +2

    Thank you so much for putting all the efforts into these videos Brian. You are the best.

  • @LMST72
    @LMST72 11 лет назад

    Thanks Brian, these lead/lag videos provided instant clarification on the topic after spending a week scratching my head in class... I'm really grateful!

  • @mnada72
    @mnada72 3 года назад

    Simply you are amazing, finally after relentless struggle I understood Lead/Lag compensator 😭

  • @mohibkhan6963
    @mohibkhan6963 11 лет назад +2

    Great lectures.Telling us the physical significance of the mathematics and also building our intuition.
    A lot of thanks Brian Douglas. And waiting for more lectures.
    Keep it up.

  • @deepikajoshi2701
    @deepikajoshi2701 10 лет назад

    Thanx for your videos! Its better to watch your videos than to waste time sleeping during lectures!

  • @jacobhiller6731
    @jacobhiller6731 10 лет назад +9

    My Proff. explained it this way... A Controller (PID, PD, PI) requires an external power source or amplification where a Compensator only emulates a PID, PD, PI controller by lead, lag, or lead-lag compensation WITHOUT the need of an external power source. For example where a PI controller is used to drive steady state error to zero, a lag compensator can only emulate that, driving steady state error very close to zero but not quite there.

  • @michaelcrossey3532
    @michaelcrossey3532 10 лет назад +13

    Absolutely fantastic explanation. You are a brilliant human being.

  • @vivekpokharkar3201
    @vivekpokharkar3201 11 лет назад

    i did understand the concept when my teacher taught me...but you made it interesting.. Thank you sir!!

  • @HassanOmariprofile
    @HassanOmariprofile 5 лет назад

    I always go back to your channel when I need to understand/review something in control. Thanks Brian for these truly amazing videos

  • @stevenjensjorgensen
    @stevenjensjorgensen 10 лет назад +3

    Great explanation! This offers a good introduction and review on what lead/lag compensators are. I tend to agree with your statement and see "controller = compensator." In that, given that the system performs in a particular way, I want give control commands that "compensates" for the undesired performance and turn it into a desired output.

  • @youssefehab9633
    @youssefehab9633 Год назад

    Hallo Brian, thank you for your awesome intuitive illustration. I believe the last meant when you introduced the lead lag compensator the locations for the poles and zeros were reversed.

  • @rhonielguillenredula2507
    @rhonielguillenredula2507 3 года назад

    This one really helped me recall the fundamentals of control design. Thank you so much!!!

  • @aerohk
    @aerohk 11 лет назад +43

    Hello! Off topic - Can you talk about state space representation if you are planning on making more videos? I heard that control engineer frequently use the state space approach to design system.

  • @asamet2007
    @asamet2007 9 лет назад +7

    You are phenomenal .. Why don't we have instructor like you ?!

  • @guibleme
    @guibleme 8 лет назад +115

    My lord in heaven, I've just found the savior. Thank you, Brian.

  • @developersclub3810
    @developersclub3810 5 лет назад +1

    10:25 these questions, I'm glad you touched upon them..

  • @SP-qp3lq
    @SP-qp3lq Год назад +1

    It's,2023, And You are still saving lives.

  • @prasadelumalai946
    @prasadelumalai946 3 года назад

    Its 2021.. its still helping a lot! Thank you 😇

  • @badnoodlez
    @badnoodlez Год назад

    Learned this years ago. Needed a refresher. Very good content 👍

  • @payalpatel4316
    @payalpatel4316 9 лет назад

    Amazing lectures. Your way of explaination is the best in this world. Could you please upload more videos so that we can learn more from a wonderful teacher.

  • @tkzsfen
    @tkzsfen 11 лет назад

    this is something that i will also vote for!!! it's probably the most mentioned thing in my labs and tutorials, but i never got even close to understanding it completely :(

  • @JoeGormanPB
    @JoeGormanPB 8 лет назад +5

    This guy is the plug. Seriously thank you so much, I wish I would have found these videos earlier in the semester.

  • @UlyssesLizarraga
    @UlyssesLizarraga 11 лет назад

    When we have a closed loop system, we are concerned about robustness, which can be determined by something called phase margin and gain margin. The higher the phase margin (measured in degrees) the more tolerant our system is to become unstable due to disturbances; therefore we are interested in modifying the phase to give us a nice "cushion" for uncertainties. Adding a phase compensator might introduce some undesired phenomena such as modifying the original bandwidth. Thanks for the video Brian

  • @hrithuolickel
    @hrithuolickel 6 лет назад

    thank you. finally getting a sense to what I am trying to accomplish with a lag lead comensator. saviour man

  • @sharikosatia
    @sharikosatia 9 лет назад +19

    thanks, learned in 10 minutes more than I did in class.

  • @leojeon5728
    @leojeon5728 6 лет назад

    i found why non ideal PI transfer function has wc ... really helpful video!!!

  • @josepharturopenaquino9812
    @josepharturopenaquino9812 6 лет назад

    You are a genius teaching, man
    Thanks for making videos like this

  • @badarikarthikguddugurike598
    @badarikarthikguddugurike598 7 лет назад

    U r simply amazing Giving the concepts in short but clear ..
    Thank you ..

  • @wonderfriend
    @wonderfriend 6 лет назад

    Sir, you make understanding so easy. thank you so much.

  • @brendawilliams8062
    @brendawilliams8062 3 года назад

    Mr Douglas. You have exceptional videos. I ve looked at others. Thx

  • @drsandeepvm5622
    @drsandeepvm5622 3 года назад

    Super simplifying explanation 👌👏 thank you so much for your support to the learners

  • @ninahooper9608
    @ninahooper9608 7 лет назад

    You are literally the best person ever. Thank you.

  • @onlyAerik
    @onlyAerik 10 месяцев назад +1

    I'm taking notes from Modern Control Engineering by Katsuhiko Ogata, ed. 4
    In chapter 6 section 5, Ogata doesn't really say they're trying to distinguish a controller from a compensator, but does nonetheless describe a compensator in a unique way.
    >In building a control system, we know that proper modification of the plant dynamics may be a simple way to meet the performance specifications.This, however, may not be possible in many practical situations because the plant may be fixed and not modifiable.Then we must adjust parameters other than those in the fixed plant. In this book, we assume that the plant is given and unalterable.
    >In practice, the root-locus plot of a system may indicate that the desired performance cannot be achieved just by the adjustment of gain (or some other adjustable parameter). In fact, in some cases, the system may not be stable for all values of gain (or other adjustable parameter). Then it is necessary to reshape the root loci to meet the performance specifications.
    >The design problems, therefore, become those of improving system performance by insertion of a compensator. Compensation of a control system is reduced to the design of a filter whose characteristics tend to compensate for the undesirable and unalterable characteristics of the plant.
    It's only in chapter 7 around Nyquist techniques that Ogata starts using the phrase
    >... controller (or compensator) ...
    And then by chapter 8, 'controller' alone is used exclusively concerning PD, PI, and PID.
    The overall trend seems to rely on two modes:
    1. Ogata uses 'compensator' when your first and largest reason for modification is stability; you're compensating for inadequacies. Then they use 'controller' when stability is almost a given, and concerns are more with time-based requirements.
    2. There is frequent mention of how PID controllers are modified on-site, implying that a compensator is not. Which I guess further implies that a controller has a human interface, and a compensator does not.

  • @chiutom4479
    @chiutom4479 8 лет назад

    This is very useful video to explain lead/lag compensator.

  • @kirtikansal6946
    @kirtikansal6946 6 лет назад

    thnx for the wonderful vedio @brain Douglas and all the guys who comment here also remove many confusions..thnx to them tooo

  • @AJ-et3vf
    @AJ-et3vf 3 года назад

    Awesome video lectures sir! You're an immense help for us to grasp the concepts and theory of control. Thank you very much

  • @achimbuchweisel2736
    @achimbuchweisel2736 2 года назад

    Very good presentation/explanation. Thank you a lot.

  • @TheDi430
    @TheDi430 5 лет назад

    Hi Brian! First of all, I'd like to show you my gratitude for your channel content, it is really helping me out with my college assignments. About this topic, I have a question. In what situation a lead compensator can reduce the stability robustness of the control system?

  • @smithjohn1164
    @smithjohn1164 6 лет назад

    Brian,your videos make me understand a lot of control system. Can you teach Mason's gain from your aspect? I will very appreciate.

  • @barisukauebari8563
    @barisukauebari8563 4 года назад

    I'm interested in MATLAB Control Tutorial. You have great videos. Thanks so much.

  • @abdulsamirkhan3813
    @abdulsamirkhan3813 7 лет назад +1

    Sir.! Your videos are amazing and helps alot in clear understandings of topics.
    I have a question regarding definitions of controller and compensator.. Can we say that " Controller is used to improve time response characteristics and compensator to improve frequency response characteristics" .?

  • @suman3316
    @suman3316 9 лет назад +4

    Hello sir your videos are awesome sir.....
    Please make videos on state space analysis also

  • @lubwee
    @lubwee 10 лет назад

    wish my control system lecturer was like you.

  • @francesconigri745
    @francesconigri745 2 месяца назад

    it's 2024 and I am sure you are still saving many lives

  • @TheJeenesan
    @TheJeenesan 10 лет назад

    Thank you very much for sharing your knowledge. I saw all your control system videos and all were very useful. Maybe state space representation lectures would be great.Thanks again and all the best!

  • @laallyal
    @laallyal 11 лет назад

    Brian, this is truly great stuff! Thank you very much! Improvement suggestion: at 4.35 you use a very dark blue. It strained my eyes when i tried to read it against the black board. However the light blue worked perfectly :) Cheers again!

  • @laurasmarrito8479
    @laurasmarrito8479 10 лет назад

    Thank you very much for clearly explaining these topics. It was very helpful.

  • @ka-ew8ui
    @ka-ew8ui 8 лет назад +2

    from the comments below i see that you deliver a great explanation by the examples of the real life you give, but i hope that you make more videos with mathamatical examples also because i cant really have the full picture sometimes of what you are saying , it would be awesome if you do this, i know its boring for you because you do it faster using matlab but it would be really helpful for us in our studies if you could do that.
    thank you in advance

  • @austinfox4130
    @austinfox4130 2 года назад

    Anecdotally, in my field of servo controlled hydraulic systems compensation is a passive or "dumb" action where a particular variable is acted on by a dedicated system, mechanical or electronic. Whereas a controller performs active analysis on a system and can respond to varying conditions and adjust things on the fly, and have its parameters modified to fit different conditions over time. Often controllers are used to actively adjust setpoints in compensators. For example, a pressure compensator may control the flowrate of a pump by constantly adjusting itself to maintain constant pressure at different pilot pressures. That pressure compensator is itself controlled by a proportional servo valve which can actively adjust that pressure compensation gain if desired.

  • @anantikamehra1694
    @anantikamehra1694 9 лет назад +1

    This is seriously awesome. I wish you were my teacher.

  • @chrisschindlbeck
    @chrisschindlbeck 8 лет назад +12

    Compensator = feedforward
    Controller = feedback

  • @ashwinimohan6467
    @ashwinimohan6467 7 лет назад

    active ckt is required for designing controllers pi, pd,pid . and a passive ckt for compensators lag,lead,leadlag. i guess that's the difference.. awesome video btw

  • @Cliu960129
    @Cliu960129 6 лет назад

    Hey Brain thanks for the video it's really helpful. I think my prof said something like compensators are 'dynamic' controllers

  • @AdityaMishra-pp1gw
    @AdityaMishra-pp1gw 4 года назад

    You said that the pole and zero would mathematically cancel each other and it's a silly example but should we cancel them keeping in mind the state space approach and the Asymptotic stability?

  • @Brandon_Behnen
    @Brandon_Behnen 11 лет назад +9

    To answer your question posted at 2:20
    I would look at the two terms based upon intended definition:
    Controller - send instruction before execution, then correct execution error
    Compensator - send instruction after execution in order to correct execution error

  • @aleksanderbanach2755
    @aleksanderbanach2755 Год назад

    zajebisty jesteś gościu nie zmieniaj się

  • @nichoyeah
    @nichoyeah 4 года назад

    THANK YOU FOR ALL YOUR VIDEOS

  • @thomasyen5706
    @thomasyen5706 6 лет назад

    Fantastic Lectures! It really helps a lot!

  • @toughcookie2429
    @toughcookie2429 9 месяцев назад

    I have a question, is the gain plot graph of combined lead and lag compensator is correct?? I think there should be a gain (positive or negative) for lead frequencies also.

  • @maythammahdi5238
    @maythammahdi5238 2 года назад

    From 2022 you're helping me

  • @thecaptainkent
    @thecaptainkent 11 лет назад

    Great stuff. Explains it very well! Do you think you could take a look at designing lag-lead compensators in the root locus, besides doing them seperately?
    Thanks a bunch!

  • @LUISBUENOBLANCO
    @LUISBUENOBLANCO Год назад

    This guy is a genius

  • @dandymcgee
    @dandymcgee 3 года назад

    As someone with zero experience in this domain, my default understanding would be:
    A controller is anything that controls something.. i.e. it has an output that is used as something else's input (e.g. how much power to deliver to a motor, or switch an LED on / off, or send a network packet, etc.). You can have hardware controllers and software controllers, and not all controllers are compensators.
    A compensator is a controller that also has a feedback input from which it reads a signal that it uses to help it make its decision about how to control. All compensators are controllers.

  • @R0kmyS0X
    @R0kmyS0X 8 лет назад +8

    Controller is what converts the error into feedback. Compensator is something that changes the system to make up for design shortcomings.
    thats my guess

  • @kjkansara
    @kjkansara 5 лет назад

    I was discussing with my friend about the difference. He said that PI controller increases noise but lead/lag compensators don't. So the use of compensator is more intuitive than the controller. Do tell me if there are more big differences. Thanks.

  • @601106790
    @601106790 4 года назад

    What a nice video!! Well done! I have a question: could you explain, the narrower phase lead/lag region is better or wider? thanks

  • @anishayush9383
    @anishayush9383 6 лет назад

    Controller is for time domain response analysis and compensator is for frequency domain analysis of a system.

  • @technicalboyshreyans
    @technicalboyshreyans 11 лет назад

    neatly expalined ... which software u are using in ths video ?? multicolor writing

  • @binsafi6361
    @binsafi6361 5 лет назад

    Douglas how did u write the transfer function as product real pole and real zero ? At approximately 5:40 in ur video
    How u break up the transfer function into a real zero and a real pole?

  • @danielvandenbrink1944
    @danielvandenbrink1944 9 лет назад

    Hey mate just wondering what computer/parts and program you use as i have been locking for some hardware to write notes dureing lectures and it seems pretty good.

  • @jawaher7857
    @jawaher7857 Год назад

    why does the o/p lags i/p by -90 degree? is this always happens with derivatives? or using PID only causes this lag?

  • @johnoh537
    @johnoh537 7 лет назад

    Thank you so much for the video, Brian.

  • @bormisha
    @bormisha 10 лет назад

    Thanks for posting your lectures!
    Are your lectures going to be focused on linear control systems only or are you planning to also describe the optimal control theory, involving calculus of variations, Pontryagin and Bellman theory?

  • @slow_white
    @slow_white 7 лет назад

    I had the same confusion about compensator and controller, thanks for mentioning it. btw, like your voice too

  • @nickdebruyckere12
    @nickdebruyckere12 2 года назад

    you are so amazing at this

  • @sallybryan3754
    @sallybryan3754 6 лет назад

    The best video i have ever watched

  • @AlexStevens3
    @AlexStevens3 10 лет назад

    These videos have been extremely helpful, thank you!

  • @luisgerardorodriguez7964
    @luisgerardorodriguez7964 2 года назад

    For what I know, a compensator has the function of compensating the effects of increasing the proportional gain. Ideally, the proportional gain should be big, so that the output can follow the input, however, increasing the proportional gain too much can make the system unstable, and that is the moment where the compensator has relevance.

  • @MaziarFooladi
    @MaziarFooladi 8 лет назад

    The best explanation I've ever seen on this topic! Awesome job Brian!!!!! Thanks!

  • @gustavomarcelo7250
    @gustavomarcelo7250 5 лет назад

    Hi Brian.
    I understood having poles and zeros reflects the stability.
    But I do not really sure why do we need to know the gain and phase shift and does it really matter in control system?

  • @aaronaquino4057
    @aaronaquino4057 9 лет назад

    Hi Mr. Douglas! Your lecture videos are amazing! Are there any reference materials that you can recommend for my control systems class? Thanks in advance.

  • @JC-xc8rx
    @JC-xc8rx 5 лет назад

    What a good Channel! Where I can find your book?

  • @omarsh77
    @omarsh77 5 лет назад

    Thank you. great simplification with good knowledge.

  • @cecilialogatto6209
    @cecilialogatto6209 7 лет назад

    I think that a compensator is a type of controller which compensates the specifications with one or more couple of poles and zeros. Instead the controller can be just proportional, or integral and so on

  • @srinivaspilla6044
    @srinivaspilla6044 7 лет назад

    Effect of adding poles and zeros to system? eg: root locus,stability etc.
    Please,Can you make a video on this topic?