A Cubic Equation | Problem 465

Поделиться
HTML-код
  • Опубликовано: 25 дек 2024

Комментарии • 4

  • @WindyNight114
    @WindyNight114 4 дня назад

    In the first method, looking at the system of equations, I was like oh a = 1 and b = 1 work as a solution, but I was not expecting those monstrous wolfram alpha ones.

  • @bobbyheffley4955
    @bobbyheffley4955 4 дня назад +2

    1/27 should be subtracted from 1/9

  • @Don-Ensley
    @Don-Ensley 3 дня назад

    problem
    z³ + z² = -2+ 4 i
    Method cubic formula.
    Define c temporarily as
    c = -1 + 2 i
    z³ + z² -2c = 0
    Let
    z = u -1/3
    27 u³- 9 u + 2-54c = 0
    Let
    u = w/3
    w³ - 3 w = 54c -2
    w = a+b for solution
    a³ +b³ = 54c -2
    ab = 1
    a³ b³ = 1
    b³ = 1/(a³)
    a³ + 1/(a³) = 54c -2
    (a³)²-(54c-2) (a³) + 1 = 0
    replace c= -1+2i
    a³ = { -56 + 108 i ± √ [(-56+108 i)²-4] }/2
    = -28+54i ± 3√3 i√(79+112i)
    w =∛ (-28-√((459√65-2133)/2)+
    (54+√((459√65+2133)/2) i) +
    ∛ (-28+√((459√65-2133)/2)+
    (54-√((459√65+2133)/2) i)
    = ∛[(-28+54 i)-3√(-237-336 i)] +
    ∛[(-28+54 i)+3√(-237-336 i)]
    = 4 + 3 i
    This is one of 3 roots to
    w³ - 3 w + 56 - 108 i = 0
    Call it r.
    r = 4 + 3i.
    The other 2 roots are the solutions to
    w² + r w + r²-3 = 0
    They are
    r₂,₃ = -(4+3i)/2 ± (3i/2) √(1+8i)
    Roots in w are
    4 + 3 i,
    -( 4 + 3i) / 2 - (3 i/2) √( 1+8i ),
    -( 4 + 3i) / 2 + (3 i/2) √( 1+8i ),
    back substitution:
    Roots in u = w/3
    4/3 + i,
    -( 2/3 + i/2) - ( i/2) √( 1+8i ),
    -( 2/3 + i/2) + (i/2) √( 1+8i ),
    Roots in z = u - 1/3
    1 + i,
    -1 - i/2 - ( i/2) √( 1+8i ),
    -1 - i/2 + (i/2) √( 1+8i )
    answer
    z ∈ { 1 + i,
    -1 - i/2 - ( i/2) √( 1+8i ),
    -1 - i/2 + (i/2) √( 1+8i ) }

  • @NadiehFan
    @NadiehFan 4 дня назад

    Error at 4:31