Can you find area of Green, Yellow, and Blue squares? | (Semicircle) |

Поделиться
HTML-код
  • Опубликовано: 9 ноя 2024

Комментарии • 40

  • @jamestalbott4499
    @jamestalbott4499 8 месяцев назад +2

    Thank you! Appreciate the step-by-step instructions!

    • @PreMath
      @PreMath  8 месяцев назад

      Glad it was helpful!
      You are very welcome!
      Thanks ❤️🌹

  • @wackojacko3962
    @wackojacko3962 8 месяцев назад +7

    I look forward to more exciting videos . ...And each day they have been progressively more exciting. I'm stoked! 🙂

    • @PreMath
      @PreMath  8 месяцев назад

      Glad to hear it!
      Excellent!
      Thanks ❤️

  • @bigm383
    @bigm383 8 месяцев назад +3

    Very methodical manipulation. Thanks Professor!

    • @PreMath
      @PreMath  8 месяцев назад

      Glad you liked it!
      You are very welcome!
      Thanks ❤️

  • @DB-lg5sq
    @DB-lg5sq 8 месяцев назад +1

    شكرا لكم على المجهودات .
    يمكن استعمال t=OF وAB=x وy ضلع الأزرق وzضلع الأصفر z=x-y
    x^2+(x-t)^2=26^2
    x2+(y+t)^2=26^2
    (x-y)^2+(x-y+t)^2=26^2
    الفرق بين المعادلة الأولى والثانية نجد
    x-y=2t
    بالتعويض في الثالثة نجد
    t^2=52
    والتعويض في الأولى نجد
    x^2=468
    وفي الاخير
    y^2=208
    z^2=52

  • @umamaheshwarankrishnamurth4486
    @umamaheshwarankrishnamurth4486 Месяц назад

    Awesome!

  • @res5139
    @res5139 8 месяцев назад

    Well done!!

  • @amnaparas4205
    @amnaparas4205 8 месяцев назад

    Excellent work,you made mathematics enjoyable

  • @misterenter-iz7rz
    @misterenter-iz7rz 8 месяцев назад +3

    Let a,b,c be the radii of green, yellow and blue squares, 26^2=a^2+(a+c)/2)^2=b^2+(b+(a-c)/2)^2, a=b+c, 3 equations 3 unknowns a,b,c。😅
    It works, by carefully calculation, first get b=4sqrt(13), then c=2sqrt(13), a=b+c=6sqrt(13), their areas are 36*13, 16*13, 4*13.

    • @PreMath
      @PreMath  8 месяцев назад

      Thanks ❤️

    • @JLvatron
      @JLvatron 8 месяцев назад +1

      That's what I thought!
      But the solution was almost as complex, anyway!

  • @michaelkouzmin281
    @michaelkouzmin281 8 месяцев назад +1

    1) Let a= AB (side of the Green), b= CD (side of the Yellow), c=PF (side of the Blue), z= OF (offset)
    2) a=b+c; => b= a-c;
    3) Let us use Pythagorean theorem thrice:
    (a-z)^2+a^2=26^2 (1)
    (b+z)^2+b^2 =26^2 (2)
    (z+c)^2+a^2=26^2 (3)
    4) from (1): (a-z)^2=676-a^2; from (3): (z+c)^2=676-a^2;
    (a-z)^2=(z+c)^2;
    a-z=z+c;
    a-c=2z; => b=2z; z = b/2;
    5) let us put newfound z into (2):
    (b+b/2)^2+b^2=676;
    Area of the Yellow square: b^2 = 676/(1+9/4) = 208 sq units;
    b= sqrt(208) = 4*sqrt(13);
    6) z= 2*sqrt(13) ;
    7) Let us put z in (1):
    (a-2*sqrt(13))^2+a^2=676 => a= 6*sqrt(13) => Area of the Green square = a^2= 468 sq units
    8) c= a-b= 6*sqrt(13)-4*sqrt(13)=2*sqrt(13) => Area of the Blue square = c^2 = 52 sq unts.

    • @PreMath
      @PreMath  8 месяцев назад

      Thanks ❤️

  • @marcelowanderleycorreia8876
    @marcelowanderleycorreia8876 8 месяцев назад +1

    Very good!!

    • @PreMath
      @PreMath  8 месяцев назад

      Thanks a lot!❤️

  • @marcgriselhubert3915
    @marcgriselhubert3915 8 месяцев назад +2

    Let's nome a the length of the green square and b the length of the blue square, then the length of the yellow square is a - b.
    We use an adapted orthonormal, center O and first axis (CB). EA = a + b and E and A are symetric by the second axis, so A((a+b)/2 ; a)
    Then D( (a + b)/2 -a - (a -b) ; a - b) or D((-3/2).(a - b) ; a - b)
    The equation of the circle is x^2 + y^2 = 26^2 = 676. D beeing on the circle we have: (9/4).(a - b)^2 + (a -b)^2 = 676, so (a - b)^2 = 676/ (13/4) = 208, the area of the yellow square is then 208.
    Now we have a - b = sqrt(208) = 4.sqrt(13) and a = b + 4.sqrt(13).
    A beeing on the circle we have: (a +b)^2 + a^2 = 676 or 5.a^2 + 2.a.b +b^2 = 676.4 = 2704, we replace a by b + 4.sqrt(13) and get:
    5.(b^2 +208 +8.b.sqrt(13)) + 2.b.(b + 4.sqrt(13)) + b^2 = 2704 or 8.b^2 +48.b.sqrt(13) -1664 = 0 or b^2 +6.sqrt(13).b -208 = 0
    Deltaprime = (-3.sqrt(13))^2 +208 = 325 = (5.sqrt(13)^2 Then b = -3.sqrt(13) + 5;sqrt(13) = 2.sqrt(13), the other possibility is rejected as beeing negative.
    So the area of the blue square is b^2 = 52. Finally a = b + 4.sqrt(13) = 6.sqrt(13) and the area of the green square is a^2 = 468.

    • @PreMath
      @PreMath  8 месяцев назад

      Excellent!
      Thanks ❤️

  • @jimlocke9320
    @jimlocke9320 8 месяцев назад

    Let the sides of the blue square have length c. We know that c = a - b, so a = b + c and b = a - c. At 13:00, we find that a/b = 3/2, so a = 3b/2 and b = 2a/3. In a = 3b/2, replace b with a - c, so a = 3(a - c)/2, 2a = 3a - 3c and a = 3c. In b = 2a/3, replace a with b + c, so b = 2(b + c)/3, 3b = 2b + 2c and b = 2c. Apply the Pythagorean theorem to ΔABO: a² + b² = (26)², (3c)² + (2c)² = (26)² and 9c² + 4c² = (26)², 13c² = (26)(26), c² = (2)(26), c² = 52 and c = √(52). So, b = 2c = 2√(52) and a = 3c = 3√(52). We square each of these lengths a, b, c to get the areas of each of the squares.
    PreMath's k turns out to be c, the length of the side of the blue square.

  • @Patrik6920
    @Patrik6920 8 месяцев назад +1

    Greate ...
    i like to clarify
    from the Area of a triangle we get (b * h) / 2 = bh/2, and for a aquere b * h=bh
    ..using a scaling factor k we get the areas of the triangle(At) or square(As) to be
    Triangle: (kb * kh) / 2 = k(b * h)/2 = k²bh/2 = At
    Square: (kb * kh) = k(b * h) = k²bh = As
    ..since k is a scling factor we can ignore if its a triangle or a squere...

    • @PreMath
      @PreMath  8 месяцев назад

      Thanks ❤️

  • @mumps59
    @mumps59 8 месяцев назад +1

    This one made me laugh out loud to see how it all unfolded. Thanks for posting!

    • @PreMath
      @PreMath  8 месяцев назад

      Glad you enjoyed it!
      You are very welcome!
      Thanks ❤️

  • @StephenRayWesley
    @StephenRayWesley 8 месяцев назад

    (52)^2=2704 (180°-2704)=√2524 √5^√5 √4^√6 √1^√1√2^√2 3^2 √1^√1 3^2 (x+2x-3)

  • @joeschmo622
    @joeschmo622 8 месяцев назад

    Magic!

  • @StephenRayWesley
    @StephenRayWesley 8 месяцев назад

    2704/2=√1352 √13^1 4^√13 √1^√1 √4^√1 √2^2 1^2 (x+1x-2)

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 8 месяцев назад

    In first place one must note that Green Square Side (a) = Yellow Square Side (b) + Blue Square Side (c). It means that a^2 = (b + c)^2 = b^2 + 2*bc + c^2.
    The angle AOD = 90º, as they share the same hypotenuse (R) = OD = OA = 26. So, OB = DC = CE' (E' = upper right corner of Blue Square). OA // CE'
    Now, let's call the the Side Length of Blue Square "x" and Area of Blue Square "x^2".
    EA = 4x and AB = 3x
    By Pythagorean Theorem:
    (2x)^2 + (3x)^2 = 26^2 ; 4x^2 + 9x^2 = 676 ; 13x^2 = 676 ; x^2 = 676 / 13 ; x^2 = 52 ; x = sqrt(52) ; x ~ 7,2 lin un
    Now:
    1) Blue Square Area = 52 sq un
    2) Yellow Square Area = (4 * 52) sq un = 208 sq un
    3) Green Square Area = (9 * 52) sq un = 468 sq un
    As the Area of the Semicircle is equal to 676Pi/2 = 338Pi ~ 1.062 sq un
    The Area occupied by the 3 Squares together is equal to 728 sq un.

  • @StephenRayWesley
    @StephenRayWesley 8 месяцев назад

    2704/3=√904 √300√^300 √2^√2 √5^√60 √5^√60 √1^√1 √1^√30^√2√ 1^√30^√2 √5^√6^√1 √5^√6^√1 √1^√3^√2 √1^3^2 √1^√1 3^2 (x+2x-3)

  • @Werner-h8m
    @Werner-h8m 8 месяцев назад

    Sauber

  • @Patrik6920
    @Patrik6920 8 месяцев назад +1

    getting challenging ;d

    • @PreMath
      @PreMath  8 месяцев назад

      Glad to hear that!
      Thanks ❤️

  • @misterenter-iz7rz
    @misterenter-iz7rz 8 месяцев назад

    Strange puzzle with Strange solution 😢

  • @Руссофобзатевающийрусофобию

    easy

    • @PreMath
      @PreMath  8 месяцев назад

      Thanks ❤️

  • @reenugera6513
    @reenugera6513 8 месяцев назад

    Too confusing

  • @ybodoN
    @ybodoN 8 месяцев назад +1

    Taking a wild guess about proportions: blue square = 1², yellow square = 2² and green square = 3²... and it works!

    • @PreMath
      @PreMath  8 месяцев назад

      Thanks ❤️