The Archimedean Spiral | Visually Explained (animation code also explained)

Поделиться
HTML-код
  • Опубликовано: 17 янв 2025

Комментарии • 52

  • @VisualXAnimation
    @VisualXAnimation 3 года назад +10

    Well done Brian ✌ Animations und voice over are spot on... Fantastic video!

  • @RobSteel117
    @RobSteel117 9 месяцев назад

    Outstanding Sir! Not only an understanding of the topic, but a dive into the creation of code that visualizes. I really enjoy your style and the fact that I can learn the concept and how to express the concepts in a coded model. Thanks much!

  • @RayyanKhanRayyanKhan
    @RayyanKhanRayyanKhan 2 года назад +1

    Thanks for making this. I'm still out of the loop and it will take me some time to digest but I just want to appreciate the animations, voice over and script. I like how you dumb things down a bit and toss out academic rigour in favour of accessibility... subbed. Plus aussie representation

  • @magzablsun9686
    @magzablsun9686 3 года назад +12

    THIS IS WHAT PETER PARKER DID TO DOCTOR STRANGE IN SPIDERMAN NO WAY HOME! good job man!

    • @BrianAmedee
      @BrianAmedee  3 года назад +1

      You're damn right thats what Peter Parker did to Dr Strange

    • @BruceBanner
      @BruceBanner 2 года назад +1

      As soon as I heard him say "Archimedes spiral" I searched for this.

    • @BruceBanner
      @BruceBanner 2 года назад

      ruclips.net/video/yknvwyHiz4Q/видео.html

  • @eszkimo8921
    @eszkimo8921 Год назад +1

    Thank you, very cool video, helped me out a ton!

  • @watercat1302
    @watercat1302 2 года назад +9

    So Peter basically shot his web along the spiral at certain intervals, and at some point, as the spiral spun, the strings converged and trapped Strange right in the middle of it?

    • @BruceBanner
      @BruceBanner 2 года назад +2

      Exactly why I searched/watched this video.

  • @gautamsunal239
    @gautamsunal239 2 года назад

    I am really grateful to you brian. This helped me in my Maths project.

  • @itsabrandnewdayso4579
    @itsabrandnewdayso4579 2 года назад +1

    That is so amazing!!

  • @smoshwed
    @smoshwed Год назад

    Love the video, thanks man, appreciate the work. Is there any donate channel?

  • @camposmarco27
    @camposmarco27 2 года назад +2

    Love the video man! Just a suggestion, but if you’re able to you should upgrade your mic. I feel like it’s the missing piece to having some top tier content!

    • @BrianAmedee
      @BrianAmedee  2 года назад

      Thanks mate, and hard agree. My mic needs an upgrade!

  • @sinaumath
    @sinaumath 2 года назад

    Brian "Brilliant" Amadee. Subscribed!

  • @Nzumbemartine
    @Nzumbemartine 3 месяца назад

    Nice❤❤❤

  • @kryptontruth5840
    @kryptontruth5840 2 года назад

    Great video. Thankunso much for the explanation.Could you please do a video explaining the code of the first 5 minutes of this video

    • @BrianAmedee
      @BrianAmedee  2 года назад

      Yes I can, I'm thinking of just doing a 'my code explained' for people who are interested

  • @momogoba
    @momogoba 2 года назад

    You are great 👍🏼

  • @dhyaneshnpanchal2665
    @dhyaneshnpanchal2665 2 года назад

    The Theam is similar to 3Blue1Brown....
    Nice Video...Ultimate

  • @matthewjames7513
    @matthewjames7513 3 года назад

    Great video. What are the labels for the graph at 3:08?

    • @BrianAmedee
      @BrianAmedee  3 года назад +1

      It is p(t) = [sin(2t), sin(3t)]. A nice looking parametric equation

  • @AnonimityAssured
    @AnonimityAssured 7 месяцев назад

    Could the spiral of Theodorus be mapped onto an Archimedean spiral, perhaps by adding a rotation parameter to the latter? I have noticed that Theodorus' spiral closely resembles Archimedes' spiral after the first few turns.

  • @educatic99
    @educatic99 2 года назад +1

    Hy Sir
    You are very talented and your videos are very helpful for the students. I really respectful to you. Kindly sir guide me which softwares you can use to make your Animated video's
    Thanks to you!

    • @BrianAmedee
      @BrianAmedee  2 года назад +1

      Thank you! I appreciate it

  • @moemedilynxmagoro1101
    @moemedilynxmagoro1101 6 месяцев назад

    brah why didnt you turn on (save mode in) order for us to watch later. I've never hear of this and i want watch it again.

  • @music39-Z
    @music39-Z Год назад

    What application/tool did he use?

  • @sisirarathnayaka9364
    @sisirarathnayaka9364 3 года назад

    Thks brain this is very important for me
    Good luck

  • @raulravelobuitron4372
    @raulravelobuitron4372 3 года назад

    Hi, what version of manim do you use?

    • @BrianAmedee
      @BrianAmedee  3 года назад

      I am currently using the latest. V0.14. A guy in the community just uploaded an installation guide for this

  • @thegamingtaco6283
    @thegamingtaco6283 2 года назад

    I have a question similar to this concept, the question is if there is a ray going out from the origin and intersecting points on the Archimedes spiral, how can we prove that the distances between the intersections are equal. I'm not really sure how to do this, could you explain?

    • @ejrupp9555
      @ejrupp9555 2 года назад

      It's in the definition of an Archimedean Spiral. r = cθ, c is a constant angular rate in terms of Length per angle ... It's a constant distance per angle ... not time ... c = L/θ. So the δr (change in r) is the same for the same Θ, because the Θ's cancel ... δr = (c)Θ = (L/Θ)Θ = L. It is not a rate in regards to time ... It's a rate in regards to an angle in space ... maybe that is where you got confused? To draw it faster or slower you would use the rate ... Θ/t ... like rpm (revs per minute) where t = time.

    • @burger_kinghorn
      @burger_kinghorn 2 года назад

      @@ejrupp9555 so in polar coordinates this is an analog to a linear equation?

    • @ejrupp9555
      @ejrupp9555 2 года назад

      @@burger_kinghorn with a constant slope m ... where b is the constant delta r (assuming you understand y=mx+b as the linear equation right?) ... yes, it's basically a polar transformation of a first order polynomial. I say it that way to leave room for logic based extrapolation. Where there exists x , x itself can be a function x = f(u).

    • @burger_kinghorn
      @burger_kinghorn 2 года назад

      @@ejrupp9555 what would be an example of a polynomial in polar?
      A quadratic ax² + bx + c has slope (1st derivative) 2ax + b. It's no longer a constant but depends on where along the x-axis you are.

    • @ejrupp9555
      @ejrupp9555 2 года назад

      @@burger_kinghorn substitute for x, r cos Θ and for y, r sin Θ. It won't look pretty.
      Set = zero ... 0 = a(rcosΘ)² + [b(rcosΘ) - rsinΘ] + c. Remember it's really y=ax²+bx+c, so 0=ax² + (bx-y) + c. You have to subtract y (or rsinΘ in this case) to equate it to zero. Use the quadratic formula for r ... a = a cos²(Θ), b = b cos(Θ) - sin(Θ), c=c.
      So ...
      {sec²(Θ) [sin(Θ) - b cos(Θ) ± √((sin(Θ) - b cos(Θ))² - 4ac cos²(Θ)]}/2a
      is the general formula.
      bx-y = r(bcos(Θ) - sin(Θ)) is where you get the b for the quadratic equation incase you were wondering, because you have to subtract, r sin(Θ) from b r cos(Θ). You have to group the x-y term together. (Is that where you were having trouble?)

  • @orinikcha9709
    @orinikcha9709 3 года назад

    How do I make arrows colored by their size?

    • @BrianAmedee
      @BrianAmedee  3 года назад

      I would imagine with a conditional statement. Ie, if vec.get_length > 10: vec.set_color(RED).
      After the conditional you would scale the vectors in place.
      I am sure there is documentation of this somewhere.

    • @orinikcha9709
      @orinikcha9709 3 года назад

      Ok Thanks!

  • @janmikonunal4599
    @janmikonunal4599 2 года назад +4

    99% people coming here because of Peter Parker beating Dr.Strange in Mirror dimension

  • @BruceBanner
    @BruceBanner Год назад

    Thanks to this amazing spiral, Spider-Man was able to beat Dr Strange. Math vs magic.

  • @kanck7909
    @kanck7909 Год назад

    archimedeez 🥜

  • @ThefamousMrcroissant
    @ThefamousMrcroissant Год назад

    Nice video, but a bit of a weird format. Always interested in nice manim animations, especially geometryically appealing ones. But merging the code and the topic feels a bit disjointed.

  • @sigurfeanaro3356
    @sigurfeanaro3356 2 года назад

    Although this was not what I was looking for, here are some thoughts «I wanted deductions of formulas (of spirals) and maybe explanations of those and applications»
    The Pythagoreans, way before Archimedes had discovered the formula for the sum of n terms of a Geometric progression. So Archimedes could have easily found the limit of the series just by elevating to a very high exponent, such as 10,000 «a myriad».
    He could then could have argued with his heuristic exhaustion concept of incommensurables «which after Cavalieri, Leibniz would call infinitesimals (1900 years later)» that the 'rest' was negligible and could not be greater than 4/3, this was done by setting an upper greater and a lower smaller limit which were greater or equal or or smaller or equal than 4/3, thus it was deducted that that 'should' be the value.
    Although he would argue that there was always left a residue because (Ai - An*q^n)/(1 - q) entails that q^n if q is between something incommensurably small «as he would argue (there was no 0 number), or an infinitesimal» and 1, say 1/2 and n is VERY great, then (1/n)^n tends to be negligible, because it is too small, thus (Ai - An*q^n)/(1 - q) becomes Ai/(1 - q) which would yield 1/(3/4), which is 4/3.
    Everything that that mathematician and scientist did «or many other Ancient Greek mathematicians, even since Thales and Pythagóras» that was passed on through millennia is translated even into English «I mean entire Books! His complete Oeuvre was not entirely preserved though, unfortunately», and everything is stated according to principles that once accepted, the conclusions follow logically and axiomatically «in his time, Mathematics had passed through the influence and works of Eudóxos and Eukleídês, which had given books which gave mathematical theorems and propositions a complete theoretical and axiomatic framework, of which with time it was greatly perfected».
    Leibniz, Huygens, Fermat, Cavalieri did not surpass much, although advanced of what renaissance recovered, and the Work Stoichéia «The Elements» of Eukleídês were only supassed in the end of the XIX century.

  • @JocasToy
    @JocasToy 3 года назад +2

    spiderman no way home

    • @BrianAmedee
      @BrianAmedee  3 года назад +1

      my one true love spiderman

  • @pi_is_3.147
    @pi_is_3.147 2 года назад

    3141 views Nice, the first 4 digits of pi