Squeeze Theorem Application to Trigonometry and Greatest Integer Functions for Limits

Поделиться
HTML-код
  • Опубликовано: 11 дек 2024

Комментарии • 17

  • @chrischuungula673
    @chrischuungula673 Год назад +1

    Great video very much helpful

  • @ronaldmayland4133
    @ronaldmayland4133 2 года назад +2

    This is the most comprehensive video on Squeeze theorem i've seen. Great video. New for me is the upper and lower boundaries

  • @Aiden-yx9ht
    @Aiden-yx9ht 3 года назад +1

    This is art !

  • @christopherramsey6001
    @christopherramsey6001 2 года назад

    I thought I had lost my link to this video and was panicking. This is my first choice of all videos on the web for understanding the squeeze theorem.

  • @chukwudisimere8463
    @chukwudisimere8463 3 года назад

    this finally made sense. thank you!!!

  • @thenewdimension9832
    @thenewdimension9832 Год назад

    Thankyou so much sir !

  • @bereketabebayehu1033
    @bereketabebayehu1033 2 года назад

    thanks for you explanation

  • @cartilo2619
    @cartilo2619 2 года назад

    Thank you, this was really helpful

  • @mafjigo
    @mafjigo 2 года назад +2

    Great video! I think at 16:00 you made a slight mistake. Factoring x**2 out of x**2+1 gives you x**2(1+(1/x**2)) not just 1+1/x. But well the limit is and was 1.

  • @juniormatshaneng3822
    @juniormatshaneng3822 3 года назад

    Thank you

  • @eriknicheskirameau5687
    @eriknicheskirameau5687 3 года назад +2

    factoring x2 in the denominator is not 1/x?

    • @_torgeek9108
      @_torgeek9108 3 года назад

      I actually thought maybe he applied a rule I'm not aware of. for function f(x) = (x^2 (1-1/x))/(x^2 (1+1/x^2 ) ) not (x^2 (1-1/x))/(x^2 (1+1/x) )

    • @mafjigo
      @mafjigo 2 года назад

      Factoring x**2 out of x**2+1 gives you x**2(1+(1/x**2)) not just 1+1/x

    • @marczxp8088
      @marczxp8088 Год назад

      @@_torgeek9108 well, yes, divide the highest denominator power

  • @kanikabagree1084
    @kanikabagree1084 4 года назад +1

    Hi is'nt x-1 < [x] ≤x?