Drawing Phase Portraits for Nonlinear Systems

Поделиться
HTML-код
  • Опубликовано: 25 янв 2025

Комментарии • 38

  • @Eigensteve
    @Eigensteve  5 месяцев назад +1

    Additional Code by Eugenio Sainz Ortiz: github.com/GenioSainz/Dynamical-Systems

  • @dafield_family6668
    @dafield_family6668 10 месяцев назад +3

    i love the transparent table and the colors. truly a wonderful format to lure people into maths. great job

  • @albertopenacabana
    @albertopenacabana 2 года назад +11

    And finally here!! Thanks for this series of videos, Steve. The way you explain math, going to the deep meaning, giving the intuition behind each concept, is definitely the way to make people love math.

  • @philblandford5560
    @philblandford5560 Год назад +1

    I'm glad you corrected the name of the function, my brain was short-circuiting for a while there

  • @mikhail_koshelev
    @mikhail_koshelev 2 года назад +2

    Beautiful! Thank you a lot for the videos! I check the channel every day for new episodes. Hope you won't stop making more content in the future!

  • @rajendramisir3530
    @rajendramisir3530 Год назад +1

    Brilliant explanation and reasoning through phase portraits without friction and with friction in a dynamical mechanical system.

  • @woodworkingaspirations1720
    @woodworkingaspirations1720 Год назад +1

    Excellent teaching. Saved me going through several pages of a chapter.

  • @malikialgeriankabyleswag4200
    @malikialgeriankabyleswag4200 11 месяцев назад

    You are a great man and a great teacher may God bless you! And thanks for providing this for us.

  • @whootoo1117
    @whootoo1117 2 года назад +5

    Best math hours on this channel. Thanks man for the great work and love you are giving explanations!

  •  2 года назад +2

    This an work of art. Thank you!

  • @AniruddhKrishna
    @AniruddhKrishna Год назад

    amazing video. I cant eeven stress on how much phase portraits have troubled me

  • @ireoluwaTH
    @ireoluwaTH 2 года назад +2

    Fascinating!
    Thank you...

  • @alirezaesmailnezhad7200
    @alirezaesmailnezhad7200 Год назад

    This was very instructive and helpful.

  • @ivargun
    @ivargun 6 месяцев назад

    Your handwriting is really nice!

  • @otibb
    @otibb Год назад

    Beautiful! This is art!

  • @eugeniagomes2727
    @eugeniagomes2727 8 месяцев назад

    Thaks for the explanaition, It was super clear!

  • @hoseinzahedifar1562
    @hoseinzahedifar1562 2 года назад +1

    This lecture is very interesting... Thank you very much.

  • @GeoffryGifari
    @GeoffryGifari 2 года назад +6

    wait... the phase portrait kinda looks as if its a contour plot when we look at the potential "hills and valleys" from "above"

    • @demr04
      @demr04 Год назад +2

      "kinda" but not. The phase space follow the gradient of the hamiltonian, and the hamiltonian is the kinetic + potential.

  •  Год назад

    What an understandable lecture! Thank you so much!

  • @carrion.alfredo
    @carrion.alfredo Год назад

    Really, really🤯. Great explanaition

  • @tarielsimonyan9907
    @tarielsimonyan9907 2 года назад +1

    thanks a lot Steve!

  • @williancintra4850
    @williancintra4850 17 дней назад

    Great class! My only question is: how can he write backwards like that?

  • @MM-ei7xv
    @MM-ei7xv 9 месяцев назад

    amazing explanation! thank you

    • @Eigensteve
      @Eigensteve  9 месяцев назад

      Glad you enjoyed it!

  • @surbhi4028
    @surbhi4028 2 года назад +1

    Please also explain how to solve and draw phase portrait numerically like in MATLAB

  • @khayahbrookes
    @khayahbrookes 2 года назад +1

    Thank you.

  • @Giovanni2862
    @Giovanni2862 Год назад

    How is the representation of trajectories in 3D space with t axis said in English?

  • @BalaramPradhan-i4f
    @BalaramPradhan-i4f Год назад

    Thank you so much sir for such a nice explanations. Sir please make a video how to draw this graph in Mathematica or in Matlab

  • @anandkumarpatidar1140
    @anandkumarpatidar1140 Год назад

    Thank You professor.

  • @komalfiza1314
    @komalfiza1314 Год назад

    Sir when we linearize nonlinear system what about error?

  • @GeoffryGifari
    @GeoffryGifari 2 года назад +2

    is the usefulness of linearizing around fixed points providing us with hints on how to draw the entire phase portraits just from the behavior around those neighborhoods?

  • @BalaramPradhan-i4f
    @BalaramPradhan-i4f Год назад

    Sir can we draw this graph in Mathematica or in Matlab ?? If possible then make videos to draw this in Mathematica plz sir

  • @chohan2253
    @chohan2253 2 года назад

    I am a beginner at these things where can I learn all the maths needed to understand this stuff. Someone, please help

    • @petrijunttila8054
      @petrijunttila8054 2 года назад

      Erwin Kreyszig - advanced engineering mathematics

  • @manfredbogner9799
    @manfredbogner9799 Год назад

    Sehr gut

  • @kktech04
    @kktech04 2 месяца назад +1

    P h e n o m e n a l lecture