Can you find area of the Blue triangles? | (Fun Geometry Problem) |

Поделиться
HTML-код
  • Опубликовано: 17 ноя 2024

Комментарии • 11

  • @matthieudutriaux
    @matthieudutriaux Месяц назад +2

    Cool !
    My first method :
    Same method like you from 0:00 to 12:35
    But, with : a+c=b+c=32, i find a=b (i won't calculate c, i choose to calculate a)
    Blue area = a+b=2*a
    a=area(QAB)=QA*AB/2 and QA=8 and AB=QA*tan(15°)=8*(2-sqrt(3))
    a=8*8*(2-sqrt(3))/2=32*(2-sqrt(3))
    Blue area=2*a=64*(2-sqrt(3))

    • @MathandEngineering
      @MathandEngineering  Месяц назад

      Wow, this is really nice, it skipped my mind to calculate a instead of c, just like you did in this method, because honestly even I found calculating c Quite boring

  • @matthieudutriaux
    @matthieudutriaux Месяц назад +2

    Second method :
    Same method like you from 0:00 to 6:40
    Blue area = a+b
    a=area(QAB)=QA*AB/2 and QA=8 and AB=QA*tan(15°)=8*(2-sqrt(3))
    a=8*8*(2-sqrt(3))/2=32*(2-sqrt(3))
    b=area(BST)=BS*H/2 and BS=AS-AB=8-8*(2-sqrt(3))=8*(sqrt(3)-1)
    H=PT*sin(15°)=8*sqrt(2)*(sqrt(6)-sqrt(2))/4=4*(sqrt(3)-1)
    Then, b=BS*H/2=8*(sqrt(3)-1)*4*(sqrt(3)-1)/2=16*(sqrt(3)-1)^2=16*(4-2*sqrt(3))=32*(2-sqrt(3))
    Blue area=a+b=32*(2-sqrt(3))+32*(2-sqrt(3))=64*(2-sqrt(3))

    • @MathandEngineering
      @MathandEngineering  Месяц назад

      Thanks for sharing this as well. I prefer the other method your shared though, but this is also a perfect one, thanks 👍

  • @abdmoh6480
    @abdmoh6480 Месяц назад +2

    I think I could solve it . a and b are equal as
    a=64-32√3 and b=64-32√3 so a+b=128-64√3
    Thank you sir for your great efforts.

  • @phungpham1725
    @phungpham1725 Месяц назад +1

    1/ We have: the triangle PAQ is a right isosceles and PTQ is an equilateral one.
    -> QA= 8 and PA=8sqrt2
    2/ AT intersects PQ at point I. Note that IT is the perpendicular bisector of PQ so, point I is the midpoint of PQ and IT//QS
    3/ Demonstrating that a=b
    Label the area of triangle ABT=c
    We have: Area of QAT=Area of BAT ( same base, same height)
    -> a+c= b+c
    --> a=b
    --> Area of the blue are= 2 times area of the triangle QAB= 8 x AB😅
    4/ Calculating the base AB
    Focus on the triangle QBS
    The angle BQS= 30 degrees, QSB=45 degrees --> angle QBS= 105 degrees.
    Drop the height BH = h to QS.
    We have two special triangles: BHS is a 45-90-45 triangle and BHA is a 60-90-30 triangle
    So, SH= h and HA=h. sqrt3
    -> h + hsqrt3 = QS =8 sqrt2
    --> h = 8sqrt2/(sqrt3+1)
    --> BS= hsqrt2=16/(sqrt3+1)
    AB= AS-BS= 8- 16/(sqrt3+1)
    AB= 8(sqrt3-1)/(sqrt3+1)
    --> Area of the blue= 8 AB
    =64(sqrt3-1)/(sqrt3+1)
    = 64(2-sqrt3) 😅😅😅

  • @santiagoarosam430
    @santiagoarosam430 Месяц назад +1

    Lado del cuadrado AQRS: 32/4=8 → QPA=45º→ AP=AQ→ PQ=8√2=QS.
    QPT=45º+15º=60º y PQ=PT=QT=QS→ PQT es triángulo equilátero con ángulos 60º/60º/60º→ AQB=60º-45º=15º→ ABQ=90º-15º=75º=TBS.
    QP y QS son diagonales de cuadrados de 8*8 adosados y por tanto son perpendiculares→ TQS=90º-60º=30º→ Cómo QT=QS→QTS=QST=75º→ Los triángulos SBT y SQT son isósceles y semejantes → Si M es punto medio de BT y QS=8√2→ MS=4√2→ QM=4√2√3→ MT=MB=QT-QM=8√2-4√2√3=4√2(2-√3) → Razón de semejanza entre MBS y BAQ =s=MS/AQ=4√2/8=√2/2→ Razón entre áreas =s² =2/4=1/2→ Áreas SBT=QTS → Área azul =BAQ+SBT =2*MT*MS*2/2=2MT*MS =2[4√2(2-√3)]*4√2 =128-64√3 m².
    Sencillo pero farragoso. Gracias y un saludo cordial.

    • @MathandEngineering
      @MathandEngineering  Месяц назад +1

      Thank you so much for sharing this amazing method of yours. Please keep sharing with us your method for the Question as I find them interesting and Educating, I remember that day, I wanted to solve one of the Questions I posted here, I didn't use my methodology, I used the one you shared and he understood it clearly thanks