Can you find area of the Brown shaded Triangle? | (Square) |

Поделиться
HTML-код
  • Опубликовано: 18 ноя 2024

Комментарии • 41

  • @allanflippin2453
    @allanflippin2453 Месяц назад +5

    The answer can be found easily without adding extra lines. I'll explain starting at 4:30 where AP and PB are found = 9 and CQ is also found to be 9. Triangle TAP area is 6*9/2 = 27. Triangle PQB area is 9*9/2 = 40.5. With the square area being 117, the total area in square and triangles is 117 + 27 + 40.5 = 184.5. The brown triangle area can be found by subtracting triangles TAB and TSQ from this total. TAB area = 6*18/2 = 54. TSQ is half the square area (117/2 = 58.5). 184.5 - 54 - 58.5 = 72.

    • @d-8664
      @d-8664 Месяц назад

      You still need the extra lines.

    • @allanflippin2453
      @allanflippin2453 Месяц назад +1

      @@d-8664 Lines DT and DQ aren't needed for the approach I described.

  • @Tom-zu2yc
    @Tom-zu2yc Месяц назад +2

    Nice. But still... It does not require that much math to solve.
    Let's start with a few observations:
    1. We are looking for the area of TBQ. And that's the area of TPQ (half of TPQS) + area of PBQ - area of TPB.
    2. Area of TPB = half the area of TAB = area TAP.
    3. You do need the lenght of AP to get the area of TAP. But you don't need the side of TPQS. It's simply sqrt of TPQS (117) - TA^2 (36) = sqrt of 81 = 9.
    4. QC = AP => area PBQ = 1/2 AP^2
    Therefore, area TBQ = 117/2 + 9^2/2 - 6x9/2 = (117 + (9x9 - 6x9))/2 = (117+3x9)2 = 144/2 just to show how easily you can do it in your head 🙂

  • @tomc.3987
    @tomc.3987 Месяц назад

    Very helpful step by step. Thanks.

  • @holyshit922
    @holyshit922 Месяц назад

    TQ = 3sqrt(26)
    TP = 3sqrt(13)
    AP^2+36 = 117 by Pythagerean Theorem
    4AP^2 +36 = TB^2
    cos(BTA) = 6/TB
    cos(PTA) = 6/TP
    angle BTP = angle BTA - angle PTA
    angle BTP + angle QTB + angle STQ = 90 degrees
    angle BTP + angle QTB = 45 degrees
    Area = 1/2*TQ*TB*sin(angle QTB) squared units

  • @xualain3129
    @xualain3129 Месяц назад

    Here is my version with trigonometry to share with.
    Let AP=sqrt(117-36)=9=PB
    ->AB=9+9=18
    TB=sqrt(6^2+18^2)=6*sqrt(10)
    sin a=TA/TB=6/(6*sqrt(10))=1/sqrt(10)
    Applying sine law to triangle PTB
    sin(b)/PB=sin(a)/PT ->sin(b)/9=1/sqrt(10)/(3*sqrt(13))=3/sqrt(130)
    cos b=sqrt(1-sin(b)^2)=11/sqrt(130)
    sin(

  • @marioalb9726
    @marioalb9726 Месяц назад +1

    S² = 117cm² --> S= 3√13cm
    d²= 2 S² --> d = 3√26cm
    a² = S²-6² --> a = 9cm
    c² = (2a)²+6² --> c = 3√40cm
    α = atan(2a/6)-atan(a/6)
    β = 45° - α = 29,7449°
    A = ½ c.d.sinβ
    A = 72 cm² ( Solved √ )

  • @santiagoarosam430
    @santiagoarosam430 Месяц назад

    TP²-6²=AP²→ AP=√(117-36)=9→ AB=2*9=18.
    Si R es la proyección ortogonal de Q sobre PQ → Los triángulos TAP y PRQ son congruentes→ QR=AP=9 y PR=TA=6 → Área TQB=ABQ+ATQ-TAB =(18*9/2)+[6*(9+6)/2]-(6*18/2) =81+45-54=72.
    Gracias y un saludo.

  • @nandisaand5287
    @nandisaand5287 Месяц назад

    TQ=Sqrt(117)•Sqrt(2)=3•Sqrt(26)
    TB=Sqrt[(6)²+(18)²]=19
    Angle PTA=arctan(9/6)=56.3
    Angle ATB=arctan(18/6)=71.6
    Angle BTP=71.6-56.3=15.3
    Angle BTQ=45-15.3=29.7
    Area BTQ=½(3•Sqrt(26))•(19)•sin(29.7)
    Area=72

  • @murdock5537
    @murdock5537 Месяц назад

    This is awesome, many thanks, Sir!
    φ = 30° → sin⁡(3φ) = 1; ∎PQST → PQ = QS = ST = PT = 3√13 → QT = PS = 3√26; AP = BP = a
    TA = 6; sin⁡(TAP) = 1; APT = δ; ABT = θ; BTP = β; PTA = α → sin⁡(δ) = cos⁡(α); QTB = γ = 3φ/2 - β
    a = √(117 - 36) = 9; sin⁡(δ) = 2√13/13 = cos⁡(α) → cos⁡(δ) = 3√13/13 = sin(α); α + β = ϑ
    BT = √(36 + 324) = 6√10; sin⁡(θ) = cos⁡(ϑ) = √10/10 → cos⁡(θ) = sin⁡(ϑ) = 3√10)/10
    sin⁡(β) = sin⁡(ϑ - α) = sin⁡(ϑ)cos⁡(α)-sin⁡(α)cos⁡(ϑ) = 3√130)/130 → cos⁡(β) = 11√130/130 →
    sin⁡(γ) = sin⁡(3φ/2 - β) = sin⁡(3φ/2)cos⁡(β) - sin⁡(β)cos⁡(3φ/2) = (√2/2)(cos⁡(β) - sin⁡(β)) =
    (√2/2)(11√130/130 - 3√130/130) = 4√65/65 →
    area ∆ BQT = (1/2)sin⁡(γ)(QT)(BT) = (1/2)(4√65/65)(3√26)(6√10) = 72
    or:
    CQP = APT = δ → sin⁡(δ) = 2√13/13 → cos⁡(δ) = 3√13/13 → tan⁡(δ) = sin⁡(δ)/cos⁡(δ) = 2/3
    BQ = k; sin⁡(δ) = 2√13/13 = CP/3√13 → CP = 6 → BC = 3 → k = 3√10; QT = 3√26; BT = 3√26;
    QTB = γ → 90 = 324 + 360 - (36√260)cos⁡(γ) → cos⁡(γ) = 7√65/65 →
    sin⁡(γ) = 4√65/65 → area ∆ BQT = (1/2)sin⁡(γ)(3√26)(6√10) = 72

  • @robertlynch7520
    @robertlynch7520 Месяц назад

    Interesting... I ended up using "functions of lines" to find crossing points, and a little Pythagoras too.
    -3x + 54 is line BQ
    Horizontal from T (not shown) intersects BQ at x = 16, y = 6, call it [M]
    Now there are 3 triangles and one rectangle to find area of.
    6 * 16 is the rectangle ATCM area
    Upper triangle is 1/2 16 * 3 in area
    Lower right triangle is 1/2 * 2 * 6
    And the big white lower triangle is 1/2 6 * 18
    Brown = 6 * 16 + [1/2 2 * 6] - [1/2 6 * 18] + [1/2 3 * 16]
    Brown = 96 + 6 - 54 + 24
    Brown = 72
    and that's that.

  • @MegaSuperEnrique
    @MegaSuperEnrique Месяц назад +4

    I was afraid we were going to get the coordinates, then calculate lengths of each side, then use Heron's formula 😂😂😂

  • @MegaSuperEnrique
    @MegaSuperEnrique Месяц назад +2

    You already had a trapezoid when you put the vertical line in. Then add the triangle on the far right, and subtract the triangle at the bottom left.

  • @quigonkenny
    @quigonkenny Месяц назад

    Square PQST:
    A = s²
    117 = s²
    s = √117 = 3√13
    Triangle ∆TAP:
    TA² + AP² = PT²
    6² + AP² = (3√13)²
    AP² = 117 - 36 = 81
    PB = AP = √81 = 9
    Triangle ∆TAB:
    TA² + AB² = BT²
    6² + 18² = BT²
    BT² = 36 + 324 = 360
    BT = √360 = 6√10
    Triangle ∆QST:
    QS² + ST² = TQ²
    (3√13)² + (3√13)² = TQ²
    TQ² = 117 + 117 = 234
    TQ = √234 = 3√26
    Let ∠BTP = α and ∠QTB = θ. As ∠TPQ = 90° and TP = PQ, ∆TPQ is an isosceles right triangle and α+β = ∠QTP = (180°-90°)/2 = 45°. By the law of cosines:
    Triangle ∆BTP:
    cos(α) = (TP²+BT²-PB²)/(2(TP)BT)
    cos(45°-θ) = (117+360-81)/(2(3√13)6√10)
    cos(45°-θ) = 396/36√130 = 11/√130
    cos(45°)cos(θ) + sin(45°)sin(θ) = 11/√130
    cos(θ)/√2 + sin(θ)/√2 = 11/√130
    cos(θ) + sin(θ) = 11/√65
    √(1-sin²(θ)) + sin(θ) = 11/√65
    √(1-sin²(θ)) = 11/√65 - sin(θ)
    1 - sin²(θ) = 121/65 - 22sin(θ)/√65 + sin²(θ)
    2sin²(θ) - 22sin(θ)/√65 + 56/65 = 0
    sin²(θ) - 11sin(θ)/√65 + 28/65 = 0
    √65sin²(θ) - 11sin(θ) + 28/√65 = 0
    √65u² - 11u + 28/√65 = 0 --- u = sin(θ)
    u = [-(-11)±√((-11)²-4(√65)(28/√65))]/2(√65)
    u = (11±√(121-112))/2√65
    u = (11±3)/2√65 = (5.5±1.5)/√65
    u = 7/√65 | u = 4/√65
    sin(θ) = 7/√65 | sin(θ) = 4/√65
    θ = sin⁻¹(7/√65) ≈ 60.26° ❌ θ ≤ 45°
    θ = sin⁻¹(4/√65) ≈ 29.74° ✓
    Brown triangle ∆QTB:
    A = QT(TB)sin(θ)/2
    A = 3√26(6√10)(4/√65)/2
    A = 3√2(6√2)2 = 18(4) = 72 sq units

  • @scottdort7197
    @scottdort7197 Месяц назад

    First draw a vertical line from Pt Q to the x-axis (Pt X). Now there are 2 triangles beneath square SQPT. One is 6x9. Ther other is 9x6. That means there is a 3rd triangle on the right QBX with a height of 9 and a base of 3.
    The area of the Trapazoid TAXQ will be = 1/2 *(6+9)*(9+6)=112.5.
    The area of triangle QBX = 1/2 *3*9 =13.5. The sum of those 2 areas is 126.
    The area of triangle TAB = 1/2 *6*18 =54
    Subtract these 2 areas = 126-54 = 72
    Easy problem after you realize Triangles TAP and PQX are similar.

  • @georgebliss964
    @georgebliss964 Месяц назад

    TP = sq.rt. 117.
    AP^2 = 117 - 36 = 81.
    AP = 9.
    Tan ATP = 9 /6 = 1.5.
    ATP = 56.310 degrees.
    Tan ATB = 18 / 6 = 3.
    ATB = 71.565 degrees.
    Therefore PTB = 71.565 - 56.310 = 15.255 degrees.
    From square, PTQ = 45 degrees.
    Therefore BTQ = 45 - 15.255 = 29.745 degrees.
    TP = sq.rt. 117.
    Diagonal TQ = sq.rt. 234 = 15.297.
    TB = sq.rt. of 6^2 + 18^2 = 18.974.
    Then brown area = 1/2 x TQ x TB x sin BTQ.
    1/2 x 15.297 x 18.974 x sin 29.745.
    72.

  • @marcgriselhubert3915
    @marcgriselhubert3915 Месяц назад

    In triangle TAP: AP^2 = TP^2 - AT^2 = 117 - 36 = 81, so AP = PB = 9 and AB = 18. In triangle TAB: TB^2 = TA^2 + AB^2 = 36 + 324 = 360, so TB = 6.sqrt(10).
    Now let's use an orthonormal center A and first axis (AB). We have T(0; 6) and B(18; 0), VectorTB(18; -6). The equation of (TP) is (-6).(x) - (18).(y-6) = 0
    or x +3.y -18 = 0.
    We have now VectorPQ(6; 9) and so Q(9+6; 0+9) or Q(15; 9). The distance from Q to (TP) is abs(15 +3.9 -18)/sqrt((1)^2 + (3)^2) = 24/sqrt(10)
    The area of the green triangle is then (1/2). TB .distance from Q to (TB) = (1/2).(6.sqrt(10)).(24/sqrt(10)) =72.

  • @unknownidentity2846
    @unknownidentity2846 Месяц назад

    Let's find the area:
    .
    ..
    ...
    ....
    .....
    First of all we calculate the side length s of the blue square from its given area:
    A = s²
    117 = s²
    ⇒ s = √117 = 3√13
    The triangle APT is a right triangle, so we can apply the Pythagorean theorem:
    PT² = AP² + AT² ⇒ AP² = PT² − AT² = s² − AT² = 117 − 6² = 117 − 36 = 81 ⇒ AP = √81 = 9
    Let A be the center of the coordinate system and let B be located on the x-axis. Then we know the coordinates of two of the three corners of the brown triangle:
    B: ( 18 ; 0 )
    T: ( 0 ; 6 )
    Now we can calculate the coordinates of the third point. Since PT and PQ are perpendicular to each other and have the same length, we can conclude:
    xQ − xP = −(yP − yT) ⇒ xQ = xP − (yP − yT) = xP − yP + yT = 9 − 0 + 6 = 15
    yQ − yP = +(xP − xT) ⇒ yQ = yP + (xP − xT) = yP + xP − xT = 0 + 9 − 0 = 9
    From the known coordinates we can calculate the area of the brown triangle by calculating the vector product of the two vectors v(TB) and v(TQ):
    v(TB) = ( xB−xT ; yB−yT ; 0 ) = ( 18−0 ; 0−6 ; 0 ) = ( 18 ; −6 ; 0 )
    v(TQ) = ( xQ−xT ; yQ−yT ; 0 ) = ( 15−0 ; 9−6 ; 0 ) = ( 15 ; 3 ; 0 )
    A(PTQ)
    = (1/2) * | v(TP) x v(TQ) |
    = (1/2) * | ( 9 ; −6 ; 0 ) x (15 ; 3 ; 0) |
    = (1/2) * | ( 0 ; 0 ; 18*3−15*(−6) ) |
    = (1/2) * | ( 0 ; 0 ; 54+90) |
    = (1/2) * | ( 0 ; 0 ; 144) |
    = (1/2) * 144 = 72
    Best regards from Germany

  • @phungpham1725
    @phungpham1725 Месяц назад

    1/ AP=PB=9
    and the two triangles TAP and PCQ are congruent so, QC=AP= 9
    2/ Area of TQB=Area of quadrilateral ATQB- Area of TAB
    =Area of(TAP+TPQ+QPB) - area of TAB)
    =1/2(6x9+117+9x9) -54
    126-54= 72 sq units😅😅😅

  • @상호정-p9q
    @상호정-p9q Месяц назад

    PTQB=(PTQ+QPB)-PTB=(117/2)+(81/2)-(54/2)=72

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho Месяц назад

    Using a Plane (XX ; YY) Carthesian Frame of Reference :
    01) Point T = (0 ; 6)
    02) Point B = (18 ; 0)
    03) Point Q = (15 ; 9)
    04) d (T , B) = sqrt(360) lin un
    05) d (T , Q) = sqrt(234) lin un. NOTE : Line TQ is the Diagonal of Blue Square with Side = sqrt(117) lin un. Diagonal Formula = sqrt(2) * Side.
    06) d (B , Q) = sqrt(90)
    07) Using Heron's Formula :
    08) Brown Triangle Area = 72 sq un
    Therefore,
    OUR ANSWER :
    Brown Triangle Area equal 72 Square Units.

  • @michaeldoerr5810
    @michaeldoerr5810 Месяц назад

    The answer is 72 units squared. Golly I think that at the 5:00 mark this shows that the ASA postulate works for vertical angles and also require a common side, P. Correct??? The other side just simply follow simple logic. Easier than it looks right???

  • @giuseppemalaguti435
    @giuseppemalaguti435 Месяц назад

    I lati sono TB= √36+324=√360,TQ=√2√117=√234,e l'angolo compreso è 45+arctg9/6-arctg18/6..poi A=(1/2)absinα=72..

  • @vaggelissmyrniotis2194
    @vaggelissmyrniotis2194 Месяц назад

    (TQB)=(TQP)+(QPB)-(TPB),also i used a bit trigonometry to find the areas of QPB and TPB triangles and therefore the result is 72.

  • @pas6295
    @pas6295 Месяц назад

    So BF is √360. Now we have all yhe three sides as √234. And 6 and √360. Using the formula as s(s-a)(s-b)(s-c) .square root of that gives you the area.

  • @jamestalbott4499
    @jamestalbott4499 Месяц назад

    Thank you!

  • @spiderjump
    @spiderjump Месяц назад

    you can find the lengths of BT , QT AND QB ..then use heron's formula

  • @ashutoshkumardalei3264
    @ashutoshkumardalei3264 Месяц назад

    The idea of construction is 👍🏻

  • @highlyeducatedtrucker
    @highlyeducatedtrucker Месяц назад

    I used Heron's formula. The diagonal of a square is the side length multiplied by sqrt(2). So TQ is sqrt(117)*sqrt(2) = sqrt(234). Sides TB and QB were found the same way you did. Once I had all three side lengths, just pop 'em in to Heron's formula and Bob's yer uncle.

    • @finirobert8037
      @finirobert8037 Месяц назад

      Did it the same way. I think it turned out less messy than the solution PreMath gave. It turns out the terms inside the square root were in the form (a+b)(a-b)(c+d)(c-d)/4 so easy to calculate (a² - b²)(c²-d²)/4 = 5184 = 72²

  • @AmirgabYT2185
    @AmirgabYT2185 Месяц назад +1

    S=72🔥

  • @tedn6855
    @tedn6855 Месяц назад

    I got same answer but used herons formula which was messy.

  • @misterenter-iz7rz
    @misterenter-iz7rz Месяц назад

    Clumsy puzzle leads to a Clumsy solution 😢

  • @nenetstree914
    @nenetstree914 Месяц назад

    72

  • @himadrikhanra7463
    @himadrikhanra7463 Месяц назад

    90 square unit ?

  • @DhdhBdhx-m4z
    @DhdhBdhx-m4z Месяц назад

    Sancs

  • @wackojacko3962
    @wackojacko3962 Месяц назад +1

    @ 4:38 if I cut two slices of bread from the same loaf and flipped one for grilled Ham and Cheese , one would think my sandwich is incongruent. ...but no it's not! So harmony at the dinner table is maintained. 🙂

  • @pas6295
    @pas6295 Месяц назад

    Let me name the Square as A B C D.From B draw a perpendicular line to meet at E of the line CE so that the angle BEC is Rt.Angle. BE is given as 6 units. EC we don't know. The line EC extended to meet at F. So that the perpendicular dropped from D meet EC extension at F. We have the area of Square ABCD as 117 Sq. Units.It means AB BC CD DA all are of length √117. NowTake the Triangle BCE you have BE as 6 units. BCas √117. So EC is =√117^2-36.Which is 117-36=81.√81. =9 units. EC is 9 so EC=CF=9 units.
    To find the area of BDF BD is known as √√234. DF is 6 given. BF we can find out . Take the triangle BEF whose sides are BE as 6 units EF as 9+9as 18 units .So BF^2 =6^2+18^2. So √6^2+18^2. Contd