Dirichlet Invented this Function to Prove a Point

Поделиться
HTML-код
  • Опубликовано: 29 мар 2024
  • In 1829, Dirichlet invented the first nowhere continuous function.
    FAQ : How do you make these animations?
    Animations are mostly made in Apple Keynote which has lots of functionality for animating shapes, lines, curves and text (as well as really good LaTeX). For some of the more complex animations, I use the Manim library. Editing and voiceover work in DaVinci Resolve.
    Supporting the Channel.
    If you would like to support me in making free mathematics tutorials then you can make a small donation over at
    www.buymeacoffee.com/DrWillWood
    Thank you so much, I hope you find the content useful.

Комментарии • 244

  • @kolbyking2315
    @kolbyking2315 Месяц назад +604

    "On sets of measure zero, always bet on Lebesgue... and his overwhelming integrability."

    • @reedoken6143
      @reedoken6143 Месяц назад +75

      bear witness to the one who left it all behind, the one who is free

    • @aokiest
      @aokiest Месяц назад +9

      hey where did u study lebesgue integrals on i ve seen quite an amount of this but i gotta see more of it

    • @Sir_Isaac_Newton_
      @Sir_Isaac_Newton_ Месяц назад +33

      💀💀💀 Fraudmat about to get the airport treatment with this one

    • @botondbalogh6017
      @botondbalogh6017 Месяц назад +20

      Found the jujutsu kaisen fan

    • @DerPoto
      @DerPoto Месяц назад +49

      As the king of calculus, Bernhard Riemann faced the Dirichlet function.

  • @whatisrokosbasilisk80
    @whatisrokosbasilisk80 Месяц назад +968

    Life has much improved since I stopped worrying about analytic monstrosities and decided to live C_infinity

    • @_Xeto
      @_Xeto Месяц назад +69

      Welcome to physics

    • @whatisrokosbasilisk80
      @whatisrokosbasilisk80 Месяц назад +31

      @@_Xeto There's a derivative for that

    • @Oxygenationatom
      @Oxygenationatom Месяц назад +8

      What the? I don’t understand the last part

    • @patrickdevlin8553
      @patrickdevlin8553 Месяц назад +47

      C_infinity refers to functions that have infinitely many derivatives. In other words, the commenter means they decided to exclusively work with very smooth functions (a nice place indeed, but not as nice as functions that are equal to their Taylor series)

    • @jankriz9199
      @jankriz9199 Месяц назад +4

      ​@@whatisrokosbasilisk80 certainly they are not. Some of the numerical approximating methods which are PRECISELY what physicists do when describing the real world is densely packed with many very nice very smooth functions, say gauss curves for example. Smoothness is nice and convenient, thus it is used.

  • @francogonz
    @francogonz Месяц назад +262

    To prove "a point" 😂

  • @FranzBiscuit
    @FranzBiscuit Месяц назад +347

    Interesting to think that these jumps occur at infinite scales too. Whether you zoom in or zoom out, the density of the discontinuities is going to be just as thick!

    • @shimrrashai-rc8fq
      @shimrrashai-rc8fq Месяц назад +39

      Yeah, you can't really visualize it perfectly ... a line riddled with infinitely tiny holes packed infinitely dense, or two complementary lines where one has holes exactly where the other is filled.

    • @TheLukeLsd
      @TheLukeLsd Месяц назад +5

      Irônicamente elas tendem a ter densidade "completa" porque a quantidade de números irracionais é um infinito além do infinito dos números racionais e pode-se dizer que a quantidade de irracionais entre dois racionais é maior que de todos os racionais. E a integral dessa função tende ao valor da constante do número irracional. Mas ao mesmo tempo entre quaisquer dois irracionais definidos haverá pelo menos um racional e entre quaisquer dois racionais definidos haverá pelo menos um irracional. Uma coisa louca lidar com infinidades, infinitos e infinitesimais.

    • @reedoken6143
      @reedoken6143 Месяц назад +9

      that's a pretty good description of the concept of dense sets in calculus and topology

  • @douglasstrother6584
    @douglasstrother6584 Месяц назад +96

    My Calculus Professor dropped this on us at the end of a Friday lecture to give something to discuss at Happy Hour.

  • @pavlosurzhenko4048
    @pavlosurzhenko4048 Месяц назад +74

    A slightly more fun example: consider a function that is equal to 0 for all irrational arguments and 1/q for any rational number p/q, where p and q are coprime and q is positive. It's not hard to show that such a function is discontinuous for all rational values and continuous for irrational ones.

    • @Grizzly01-vr4pn
      @Grizzly01-vr4pn Месяц назад +11

      Thomae's function

    • @TheLuckySpades
      @TheLuckySpades Месяц назад +9

      The modified Dirichlet function is fun
      It is also neat to show that the Dirichlet function is not Riemann integrable, but the modified one is

    • @matheusjahnke8643
      @matheusjahnke8643 Месяц назад +3

      Nitpick police coming in
      That function is also continuous for 0;

    • @pavlosurzhenko4048
      @pavlosurzhenko4048 Месяц назад +8

      @@matheusjahnke8643 The nitpick police is wrong. Zero is a rational number of the form 0/1 (0 and 1 are coprime since gcd(0,1) = 1, and 1 is positive), so the value of my function there is 1/1 = 1. But there are irrational numbers in any neighborhood of zero, and those are sent to zero, so the function is discontinuous at zero too.

    • @polvoazul
      @polvoazul Месяц назад +2

      @@pavlosurzhenko4048 so i guess you are... the nitpick fbi? heahaeheha

  • @carl00s01
    @carl00s01 Месяц назад +241

    But what happens to the FT of that function??? Also converges to 1/2 ?

    • @NuptialFailures
      @NuptialFailures Месяц назад +231

      Because the function is nowhere continuous it doesn't meet the criteria to have its Fourier transform taken. The point of this function was to essentially construct a function for which the Fourier transform couldn't be taken

    • @hansyuan4116
      @hansyuan4116 Месяц назад +30

      I believe it will be constantly 1. Observe that if f and g are Lebesgue integrable functions and the measure of {x|f(x) != g(x)} is zero, then the Fourier series of g equals the Fourier series of f. The result follows by letting f=1 for all x and g be the dirichlet function.

    • @NuptialFailures
      @NuptialFailures Месяц назад +55

      @@hansyuan4116 this will depend on how we are defining the Fourier Transform. If we use the Riemann Integral, then, as the video is discussing, the lack of piecewise continuity will make it so we can’t take the Fourier Transform.
      If we use the Lebesgue Integral then, as you suggest, we can extend the functions for which we can apply the Fourier Transform to.

    • @pierro281279
      @pierro281279 Месяц назад +7

      I was about to comment that your pronunciation of Dirichlet may have been wrong as all teacher I've had pronounced "dirikley".
      They were all wrong, my life was a lie !

    • @user-gd9vc3wq2h
      @user-gd9vc3wq2h Месяц назад +6

      ​​@@pierro281279He was German with French-speaking ancestors (from what is now the French-speaking part of Belgium). In Germany, his name is usually pronounced "Dirikley" nowadays, but the French way, i.e. "Dirishley", isn't wrong either, imo.

  • @syvisaur7735
    @syvisaur7735 Месяц назад +26

    In the description you wrote "In 1729" and I believe you meant to write "In 1829" since this would be roughly around Fourier's time..

  • @alphahex99
    @alphahex99 Месяц назад +1

    Mindblowing. Great explanation!

  • @jakehr3
    @jakehr3 Месяц назад +33

    This just makes me realize that the intuition I had developed to explain why the cardinality of the reals is larger than the cardinality of the rationals is not correct
    Well that's fun. Just gotta relearn my fundamental understanding of infinity again

    • @jordanrodrigues1279
      @jordanrodrigues1279 Месяц назад +17

      Intuition is kinda cursed when thinking about these things. Notice that we're really close to stating the continuum hypothesis, and that can't be proven or disproven.

    • @serraramayfield9230
      @serraramayfield9230 Месяц назад +5

      @@jordanrodrigues1279Indeed, it was proven to be independent in the 90s

    • @matheusjahnke8643
      @matheusjahnke8643 Месяц назад +2

      @@jordanrodrigues1279 you mean those things are cursed while intuition fails because it isn't;

  • @astrophage381
    @astrophage381 Месяц назад +4

    Whatta rebel my man Dirichlet!
    Great video!🎉

  • @Catman_321
    @Catman_321 Месяц назад +64

    Why does it become continuous if you take only the rational or irrational parts? Wouldn't there be an infinitely dense forest of Removable points of discontinuity if you do that?

    • @shimrrashai-rc8fq
      @shimrrashai-rc8fq Месяц назад +69

      Continuity means different things depending on the domain. In fact, calculus books that call a function with points excluded from its domain "discontinuous" at non-domain points are kinda misleading because such a thing is technically not a function at all on the "full" reals (rather it's what is called a "partial function"), since the definition of a function requires that each point of the domain be associated with _some_ point of the codomain. If you restrict the domain to, say, only rational points, then what happens is that in effect this domain cannot "see" where what you are calling "discontinuities" are, and thus it "thinks" the function is continuous. (Think about what'd happen if the reals just didn't exist, because you did not define them yet!)

    • @argon7624
      @argon7624 Месяц назад +5

      Well imagine if you only have rational numbers, for each x in Q, f(x) = 1, you are continuous on your domain

    • @hanskywalker1246
      @hanskywalker1246 Месяц назад +1

      ​@@shimrrashai-rc8fqbut then 1/x must be continuous too?

    • @skallos_
      @skallos_ Месяц назад +12

      If you exclude 0 from the domain, yes, 1/x is continuous. If you do include 0, then no matter what you define 1/0, the function will be discontinuous.

    • @hanskywalker1246
      @hanskywalker1246 Месяц назад

      @@skallos_ but since everything divided by 0 doesn't exist can't you just say that these functions then are contiuous. Or if they are just contiuous on a given interval aren't they just partly contiuous?

  • @michaelzumpano7318
    @michaelzumpano7318 Месяц назад +10

    Whoa, yeah it becomes continuous. That raises moe questions… Great video! I hope you’re going to do a follow-up to this.

  • @Miguel_Noether
    @Miguel_Noether Месяц назад +67

    Dirac's delta function has entered the chat

    • @ThePiotrekpecet
      @ThePiotrekpecet Месяц назад +3

      Dirac delta is continuous when you define it properly, as a linear functional on a Schwartz space (a distribution) since it is bounded (as an operator)

    • @ThePiotrekpecet
      @ThePiotrekpecet Месяц назад +1

      Also Fourier transform is defined differently for distributions i.e.
      Fourier transform (Dirac delta(f))=Dirac delta(- Fourier transform(f))

    • @pneujai
      @pneujai Месяц назад +2

      dirac delta has nothing to do with today’s topic

  • @General12th
    @General12th Месяц назад +3

    Very cool!

  • @kalin6739
    @kalin6739 Месяц назад +4

    Great video! At 0:30, that infinite sum of trig functions would also be a weierstrass function right? Would love to see you do a video on that topic, a similarly weird function to the one you talked about this time

    • @MeButOnTheInternet
      @MeButOnTheInternet Месяц назад

      Fourier series are especially useful for solving PDEs such as the heat equation. such a series would certainly be differentiable whereas the point of the wierstrass function is that it is differentiable nowhere.

  • @Red-Brick-Dream
    @Red-Brick-Dream Месяц назад

    This might be the greatest math-pun I've ever read

  • @nikilragav
    @nikilragav 9 дней назад +1

    how does it become continuous if you restrict the domain just to rational or irrational? won't you have holes?

  • @12321dantheman
    @12321dantheman 25 дней назад

    always coming across this function in physics

  • @manamimnm
    @manamimnm Месяц назад

    Isn't that there are more irrational numbers than rational numbers? Won't this affect the density of the lower line? What would the Fourier transformation for this function look like?

  • @davidsiriani9586
    @davidsiriani9586 Месяц назад +9

    this is for 2:21
    )
    also have you heard of the musician will wood? also good stuff

    • @johnmartorana196
      @johnmartorana196 Месяц назад +2

      Thank you. We'll need another at 3:57 if you've got one. It was driving me more crazy than it had any right to.

    • @hihello8601
      @hihello8601 Месяц назад +1

      will wood fan spotted

  • @xizar0rg
    @xizar0rg Месяц назад +13

    Wait! So does the dirichlet function even have a fourier expansion? My instinct is that it can't as it is everywhere discontinuous, and so it can't have a derivative anywhere. It also doesn't satisfy an alternate sufficiency for f-series by not being of bounded variation (Wik, '72).

    • @adammillar1324
      @adammillar1324 Месяц назад +7

      Unless I am mistaken, your instinct is backed up by a theorem! Isn’t it wonderful when that happens.
      If f is differentiable at a point x=c, it is continuous there.
      Contrapositively, if f is discontinuous at x=c, it cannot be differentiable there.

    • @pavlosurzhenko4048
      @pavlosurzhenko4048 Месяц назад +18

      You need Integrability for the Fourier expansion, not differentiability. But yeah, it's not Riemann-integrable. However, the Lebesgue integral of this function on any interval is 0, and it will also be the case after multiplying by a sine or cosine, so the Fourier series will have all zero coefficients and will converge to 0 (which is equal to the Dirichlet function almost everywhere, so it's not actually that bad).

    • @timseguine2
      @timseguine2 Месяц назад +1

      In fourier theory you can ignore an arbitrary measure zero set and get the same answer. In this context, the rationals are countably infinite and so have measure zero, so we can choose to just ignore the rationals. If we do that, the function is exactly zero everywhere that remains, so the fourier transform is exactly zero everywhere.

    • @xizar0rg
      @xizar0rg Месяц назад

      @@timseguine2 Aren't fourier transforms reversible, though? Seems like this destroys the original function. (asking, not arguing)

    • @timseguine2
      @timseguine2 Месяц назад

      @@xizar0rg Reversible in the function space L1. And the Dirichlet function is equivalent to zero in the L1 norm. As far as the L1 norm is concerned the Dirichlet function is the zero function. One way of interpreting it is that the dirichlet function has zero content at any finite frequency. Which the video hinted at.

  • @warguy6474
    @warguy6474 15 дней назад

    Hi is the Weierstrass function related to this subject?

  • @tttITA10
    @tttITA10 20 дней назад

    The c for rationao and d for irrational idea was the first thought I had when I saw the thumbnail. Kinda proud of having basic understanding of maths.

  • @mechadense
    @mechadense Месяц назад

    I guess the merely countably infinite (actually constructivistically "existing") subset of the irrationals (that are computable by a necessarily contably infinite set of all combinatorically possible different algorithms) are sufficient here.
    So is this compatible with constructivistic math?
    I'm not sure.

  • @raghavmahajan3341
    @raghavmahajan3341 Месяц назад +2

    People had a lot of free time those days.

  • @vivvpprof
    @vivvpprof Месяц назад

    OK ngl, that last bit killed me ☠

  • @peamutbubber
    @peamutbubber Месяц назад

    The most epic pun

  • @CoffeeKatastrophe
    @CoffeeKatastrophe Месяц назад +7

    What in banach-tarski‘s two dimensional cousin is this?

  • @pizzarickk333
    @pizzarickk333 Месяц назад +10

    how does restricting it to the rational inputs make it continuous?

    • @magma90
      @magma90 Месяц назад +5

      The function is defined as f(x)=a if x is rational, and f(x)=b if x is irrational, therefore if we restrict it to rational inputs, the function cannot give the value of b, as b is output when x is irrational, therefore as a is the only value of the function when x is rational, and we only can input rational numbers, the function simplifies to f(x)=a, which is continuous.

    • @pizzarickk333
      @pizzarickk333 Месяц назад +3

      @@magma90 I understand that as we restrict the domain to the rational inputs, f takes only the value a (which is 1 in pur case). But I don't understand how that makes it continuous. My understanding is that if a function is any close to being continuous on some interval I, it needs to be defined on all real numbers in I. If, for example, I define the function g(x) that equals x² when x is an integer, and 0 when it is not. If I restrict the domain to only integers, my functions would g(x) = x². But it is not continuous since it is defined only for integer values. Am I missing something here?

    • @pavlosurzhenko4048
      @pavlosurzhenko4048 Месяц назад

      @@pizzarickk333you're missing the more general definition of continuity. The most general version of it is that between arbitrary topological spaces. You treat both the domain and the codomain as their own spaces (so for our purposes irrational inputs simply don't exist). If you can't detect any discontinuities, then the function is continuous. For example, if you define a function on rational values to be 0 for x < 0 and 1 for x >= 0, you can still find that the function is discontinuous at 0, but for constant functions there aren't any discontinuities at all.
      Now the induced topology on natural numbers is a discrete one, which means that every function with natural numbers as its domain and some other topological space as a codomain is continuous. People generally don't talk about continuous functions on natural numbers because it's not very meaningful - they are _all_ continuous.
      As for more precise definitions, I'm not going to give you the most general one, since it requires some intuition building first, but if you have two sets X and Y with a well defined concept of distance between two points (let's write it as d(x, y)) then you can say that a function f from X to Y is continuous at a point x iff for any epsilon > 0 there is such a delta > 0, such that for all x' if d(x', x) < delta then d(f(x'), f(x)) < epsilon. Hopefully you can see how it's basically the same definition as in your real analysis class.

    • @natebowers7024
      @natebowers7024 Месяц назад

      ​@@pizzarickk333 I think some of your confusion may come from the (opaque) definition of continuous functions on weird sets. In your example on the integers, we have a function g:Z->Z with g(x) = x^2. The usual topology on the integers is the discrete topology; that is, ever subset of Z is open. By the definition of topological continuity, it is quite easy to see g(x) is continuous as every function from a discrete topology to an arbitrary topology is continuous (see note below)
      If you haven't studied topology, sadly, this approach isn't too intuitive. The key idea, however, is that defining a function consists of three things: the domain, the co-domain, and the map. It's normally implied that the domain is the real numbers, but, for domains like Z, definitions that are formulated over the reals no longer make sense. Topology helps us deal with these cases. I hope this helped!
      N.B. For two topological spaces (X,𝜏x), (Y,𝜏y), we say a function f:X→Y is continuous if for every open V⊆Y, its inverse image is open; that is f^-1(V)={x∈X|f(x)∈Y}∈𝜏x. A direct consequence of this definition is that every function from a discrete topology to an arbitrary topology is continuous. As the discrete topology is simply 𝜏x=P(X) (the power set of X), trivially for any V we have f^-1(V)∈𝜏x as the power set contains all subsets. Thus, the claim holds.

    • @farfa2937
      @farfa2937 Месяц назад +8

      @@pizzarickk333 Continuous always implies "within the domain". If you evaluate continuity as "it needs to be defined on all real numbers in I" you haven't restricted the domain.

  • @cooldog6807
    @cooldog6807 Месяц назад

    This is so cool

  • @graf_paper
    @graf_paper 9 дней назад

    Wait!! That last sentence of the video felt like mike drop. Why dies the function become continuous when we restrict the domain to just the rational or just the irrational? Wouldn't this be a line with infinity many holes in it?!

  • @jrgen7903
    @jrgen7903 11 дней назад

    how does the function become continuous if restricted to just one of the domains?

  • @lawrencebates8172
    @lawrencebates8172 Месяц назад +2

    While I understand each of them in isolation, it makes my brain hurt to try to reconcile that a) between any two rationals there is an irrational and between any two irrationals there is a rational, and b) that rationals are countably infinite and irrationals are uncountably infinite. It feels like A should imply they have the same cardinality, even though i know that it doesn't!

    • @SioxerNikita
      @SioxerNikita 10 дней назад

      You can systematize a mathematical way to represent all rationals, you can't with irrationals.

    • @lawrencebates8172
      @lawrencebates8172 10 дней назад

      @@SioxerNikita That's just another way of saying that the rationals are countably infinite and irrationals are uncountably infinite, it doesn't really help with building an understanding or intuition for why.

  • @Raccoon5
    @Raccoon5 Месяц назад +3

    One thing that bothers me a bit. Aren't irrational numbers suppose to be denser than rational ones since they are alef_1?
    If there is at least one rational number between two irrational and one irrational between two rational it sounds like there is the same density and same amount of numbers which cannot be due to uncountable/countable Infinity

    • @canaDavid1
      @canaDavid1 Месяц назад +8

      There is not just one between them; there is a coutably infinite rationals and uncountably many irrationals.
      It's like there is always an integer between two numbers with difference > 1, and also a real between them, but there are more reals between.

    • @alexanderf8451
      @alexanderf8451 Месяц назад +2

      They do have the same density. Nothing requires sets of different cardinalities to have different densities.

    • @legendgames128
      @legendgames128 Месяц назад

      Even if the irrational numbers are more numerous, I'd be inclined to think that irrationals and rationals have the same *density*

    • @SioxerNikita
      @SioxerNikita 10 дней назад

      ​@@canaDavid1You cannot have more irrationals than rationals, if you can always find a rational in between any two irrationals and vice versa.
      Saying there is now more of one than the other is... Well... Logically wrong.
      We can say there are more reals than integers, because there is an infinite amount of reals in between any two integers.

  • @basilvanderelst128
    @basilvanderelst128 Месяц назад

    With the proof you just gave, could you say irrational numbers and rational numbers alternate in a certain way? Or not?

  • @ericlaska4748
    @ericlaska4748 Месяц назад

    But what happens to the Fourier Series? How could we even attempt to compute it, since digital numbers are inherently rational and analog values irrational?

  • @harikrishna2k
    @harikrishna2k 23 дня назад

    Is this a reupload? I remember seeing this long ago

  • @puffinjuice
    @puffinjuice Месяц назад

    Would be interesting to know about the significance of this. What has this function been used for?

  • @user-pr6ed3ri2k
    @user-pr6ed3ri2k Месяц назад +1

    2:02 not differentiable anywhere?
    Weierstrass moment

  • @Simon-cz1jg
    @Simon-cz1jg Месяц назад

    Wouldn't splitting the function into two restricted functions not be continuous because there exists both rational and irrational numbers in all real numbers? For example, on the irrational restriction, wouldn't the function be discontinuous at every rational number like 0,1,2??

    • @hhhhhh0175
      @hhhhhh0175 Месяц назад

      talking about continuity where the domain isn't an interval (or even connected) is indeed pretty weird. if we use the normal definitions of continuity for these domains, the restrictions of the dirichlet function are continuous - but so is, for example, the indicator function of x^2 < 2 on the rational numbers, which clearly has jumps

    • @mirkotorresani9615
      @mirkotorresani9615 Месяц назад

      The restriction to some subset is a new function, that only sees that subset. And if on that subset the function is constant, then is continuous.
      We are teaching math at high-school in the same way that mathematicians did before Cauchy: everything must be an interval, and function have always a "natural" domain. The problem is that Cauchy died in 1857

  • @MrAdamo
    @MrAdamo 13 дней назад

    That is actually so fucking genius

  • @markgraham2312
    @markgraham2312 Месяц назад

    I learned about this function in college.

  • @benrex7775
    @benrex7775 Месяц назад +1

    After watching the video I understand the problem but not the solution.
    How does the formula look like for that rational/irrational function?
    How doe the Fourier of it look like?
    is this infinitely zoomable and if so why?
    Why is it not continuous and why does every other point need to be irrational. Can't I just make up a function where every odd measurement point is 1 and every even measurement point is 2?

    • @alexanderf8451
      @alexanderf8451 Месяц назад +1

      Like calculating if a number is irrational? That's not needed here, only the existence and properties the rationals and irrationals. Its not continuous because if you pick any two points on the real line the function will have at least discontinuity (a switch between 0 and 1, in this case) between them (in fact it will always have infinitely many). You can have a function that is 1 on the odds and 2 and the evens, yes, though that doesn't matter here are parity is only defined for integers (whole numbers) and those are sparse in the reals.

    • @benrex7775
      @benrex7775 Месяц назад

      ​@@alexanderf8451 I don't think your answer really helped me understand the situation any better. Perhaps let's start with a simple question.
      Is this a function which you can formulate in the following matter: f(x)=a*x+b

    • @alexanderf8451
      @alexanderf8451 Месяц назад

      ​@@benrex7775 No, the function can't be written the way you describe.

    • @benrex7775
      @benrex7775 Месяц назад

      @@alexanderf8451 How is it written then?

    • @alexanderf8451
      @alexanderf8451 Месяц назад

      @@benrex7775 He shows you how its written in the video.

  • @philipoakley5498
    @philipoakley5498 Месяц назад +2

    Isn't the number of irrationals greater than the number of rationals (different infinities), yet it appears as if they are exactly alternating (an irrational between two rationals, and a rational between two irrationals).
    Are there gaps in the continuum? ;-) Insights anyone?

    • @alexanderf8451
      @alexanderf8451 Месяц назад +2

      The irrationals are uncountable while the rationals are countable. However that doesn't matter here only their density does and both have the property of being dense in the reals. That means given any rational (or irrational) there is no meaningful "next rational" (or "next irrational"), specifically if you chose any rational (or irrational) and then declare another value to the next one there are infinitely many counterexamples. Thus they don't alternate because to alternate you'd have to be able to pick the next number.

    • @philipoakley5498
      @philipoakley5498 Месяц назад

      @@alexanderf8451It's how to explain that while you can put the numbers apparently in commuting ascending order (rational, irrational, rational,..) that you{we} don't actually have what you{we} thought you{we} had, possibly because you don't 'sort' the numbers like that to actually count the rational numbers (it may also be co-related to primes and co-primes and finding them).

    • @kikivoorburg
      @kikivoorburg Месяц назад

      They’re not “alternating”, as mentioned in the video we can’t call it “oscillating” specifically because of the fact that _there’s actually infinitely many rationals and irrationals between any two (ir)rational numbers._ It’s basically impossible for our minds to conceptualize a function like this, since infinity is weird. There’s no notion of “zooming in far enough” until you see rationals and irrationals as separate, because they just aren’t ever separate.
      Personally I interpret it as two vaguely ethereal “constant (line) functions” which look solid from a distance but are actually filled with holes. Kinda like matter in the universe, I guess

    • @semicolumnn
      @semicolumnn 9 дней назад

      @@philipoakley5498 It’s provable that you can’t exhaust the real numbers using a sequence of the form {rational, irrational, rational, …}.

    • @philipoakley5498
      @philipoakley5498 9 дней назад

      @@semicolumnn the question is how you explain it...

  • @Artemka2009_SB
    @Artemka2009_SB Месяц назад +1

    3:55 you forgot the ) after irrational

  • @realdragon
    @realdragon Месяц назад +4

    But what about Fourier transformation of this function?

    • @btf_flotsam478
      @btf_flotsam478 Месяц назад

      Fourier transforms involve integrals and the rational numbers have measure zero over the real numbers. The Fourier transformation would just be zero.

    • @farfa2937
      @farfa2937 Месяц назад +1

      afaik the point this was invented to prove is that it cannot have one.

    • @ThePiotrekpecet
      @ThePiotrekpecet Месяц назад

      ​@@farfa2937it has one if you define Fourier transform in a modern way by Lebesgue integral. Fourier transform of this function is zero since Q has Lebesgue measure 0

  • @UODZU-P
    @UODZU-P 3 дня назад

    Its almost like the function is in a "super position" of sorts?

  • @ny3dfan781
    @ny3dfan781 Месяц назад

    Can quantum nonlocality/entanglement be represented by a Dirichlet function?

    • @kikivoorburg
      @kikivoorburg Месяц назад

      They’re not really directly related. Quantum entanglement comes down to interconnected probabilities, and extends far past 2 connected states (entire systems of particles can entangle together).
      Also, which state is which is an arbitrary choice, which the rational/irrational inputs in the dirichlet function aren’t. (Obvious example: there are more irrational numbers than rational ones, by Cantor’s diagonal argument.) The fact we can distinguish these two means it can’t correspond to the indistinguishable entangled states.

  • @evanbasnaw
    @evanbasnaw Месяц назад +1

    If "Because FU, that's why" had a function.

  • @underfilho
    @underfilho Месяц назад

    ok but what happens with the fourier transform of that function?

    • @ThePiotrekpecet
      @ThePiotrekpecet Месяц назад +1

      If we talk about Fourier transform defines by riemman integral it doesn't exists since 1_Q is not riemman integradable so Dirichlet would probably end at that but if you define Fourier transform by Lebesgue integral Fourier series is the 0 function so Fourier series converges everywhere to 1_Q :)

  • @tophat593
    @tophat593 20 дней назад

    Oh my god, I understood that...

  • @user-qn2bg7zb9s
    @user-qn2bg7zb9s Месяц назад +2

    But aren't "just the rationals" countably infinite thus not continuum in a sense

    • @semicolumnn
      @semicolumnn 17 дней назад

      You can define continuity on discrete sets by generalizing from the real line. In fact, one can define continuity for functions from set to set, like f: R -> Q

  • @vladthe_cat
    @vladthe_cat Месяц назад

    I feel like with infinite precision the function would be continuous for both rational and irrational numbers

  • @lordtadhg
    @lordtadhg Месяц назад

    2:21 um... you are missing a closing parenthesis on "(irrational" and then again at 3:59.

  • @TheFinagle
    @TheFinagle Месяц назад

    Inadvertently there is a proof in here (or at least a basis for one) that the number of rationals and number of irrationals is actually the same, and thus they are the same size of infinity.
    This would contradict other proofs that show that there are more irrationals than rationals, infinitely many more making the counts different orders of infinity.
    I wonder if you could find a flaw in one of these proofs using the other, or if they can both be true (which would be weird, but infinities can sometimes just be weird like that)

    • @semicolumnn
      @semicolumnn 17 дней назад

      Between two irrationals a,b there are countably infinitely many rationals and uncountably infinitely many irrationals. (This immediately follows from the fact that (a,b) is uncountably infinite and that Q is dense in R as demonstrated in the video). While Q is dense in R, it can still be denumerated.

    • @TheFinagle
      @TheFinagle 16 дней назад

      ​@@semicolumnn Ok, but according to the Dirichlet function rationals and irrationals strictly alternate. Because they strictly alternate each rational is followed by one and only one irrational, and each irrational is followed by one and only one rational. Thus according to Dirichlet and the proof started around 2:18 there is an exact 1 to 1 relationship between rationals and irrationals.
      Somewhere between the different proofs exists a contradiction, but as they are describing different facets of the number line and I don't think they directly contradict each other.
      My quandary which I am not knowledgeable enough to follow through properly is if they really are in contradiction where only one could be true or if it could be solved an shown that both things are true simultaneously - that there are infinitely many more irrationals than rationals AND an exact 1 to 1 relation between rationals and irrationals
      (which as I said would be weird, but sometimes infinities just do weird stuff)

    • @semicolumnn
      @semicolumnn 16 дней назад

      ​@@TheFinagle A rational isnt followed by exactly one irrational. In constructing the irrational, Dr. Wood uses (a + r(b-a)) where r is an irrational number between 0 and 1. There are uncountably many irrational numbers between 0 and 1 (Because (0,1) is uncountable and Q is countable) and thus there are uncountably many irrational numbers between two rationals. The other direction is much simpler. We know that there are infinitely many rationals between any two reals, and that the rationals are only countably infinite. Thus, the number of rationals between two irrationals is countably infinite.
      To recap: Between any two real numbers a and b, there exist uncountably many irrationals and countably many rationals. No paradox.

    • @TheFinagle
      @TheFinagle 16 дней назад

      @@semicolumnn Then it should be possible to formally write that proof in a way that directly disproves that Dirichlet's function as being strictly discontinuous, ie that at some points you must have more than one irrational in a sequence because there are more irrationals than rationals. Thus forcing a continuity to exist within the function where irrationals happen in sequence.
      In doing so you would break one of the 2 proofs he used to show that they strictly alternate such that the function can be discontinuous between ALL real numbers.

    • @semicolumnn
      @semicolumnn 16 дней назад

      @@TheFinagle You can't have any real numbers in a sequence. If you could, their difference would be the smallest positive real number, but no such number exists.

  • @hafez591
    @hafez591 Месяц назад

    Infinite decimals does not mean necessarily that the number is irrational, take for example 1/3

  • @anonymousmisnomer5443
    @anonymousmisnomer5443 Месяц назад +2

    Hey this isnt the Normal Album!

    • @the_person
      @the_person 10 дней назад

      Was searching for a Will Wood (the artist) comment

  • @popularmisconception1
    @popularmisconception1 20 дней назад

    Well, I would argue, that y=Dirichlet(x) where x is from Q is dense, but it is not continuous, since Q, while dense, is only countably infinite, |Q|=|N|, i.e. does not have the cardinality of continuum, while R is uncountably infinite, thus R\Q is also uncountably infinite, |R| > |Q|, |R\Q| > |Q|, and thus y=Dirichlet(x) where x is from R\Q is really continuous subset. In other words, rational line y=1, is infinitely-times sparser than Irrational line y=0. Therefore, on average, the Dirichlet function is zero. Only occasionally, on those infinitely rare rational countable moments in the irrational continuum, is it 1.

    • @YouTube_username_not_found
      @YouTube_username_not_found 8 дней назад

      >> "I would argue, that y=Dirichlet(x) where x is from Q is dense, but it is not continuous, since Q, while dense, is only countably infinite"
      Continuity does not care about the cardinality , it only cares about the behaviour of the function in the neighbourhood of the non isolated points of the domain and the behaviour at that point.
      Whenever there is a sequence that converges to a point, we can define the limit of the function at that point. Note that this point need not be in the domain. And since Q is dense in R, then every real is not an isolated point, so we can define the limit of the Dirichlet function at any real number.
      This limit is determined by the behaviour of the function in the neighbourhood of the non isolated point. Since the restriction of the Dirichlet function on Q (respectively on R\Q) is constant, the behaviour of the function around any point would be constant, so any limit value would be that same constant.
      Now, we recall the definition of continuity: f is continuous at a ⇔ lim(x→a) f(x) = f(a) .
      In order for us to talk about the continuity at a point, that point must be both an non isolated and a point in the domain. This is already verified for the Dirichlet function restricted to Q (respectively R\Q) , all of the points of the domain are non isolated.
      The function is constant, so, ∀a∈Dom(f) , f(a) = c and lim(x→a) f(x) = c , they are both equal! Thus, any constant function is continuous.
      Reference: Real Analysis 26 | Limits of Functions

    • @YouTube_username_not_found
      @YouTube_username_not_found 5 дней назад

      Just to clarify; the reference is a video on RUclips

  • @catcatcatcatcatcatcatcatcatca
    @catcatcatcatcatcatcatcatcatca 23 дня назад

    So between any two points in the real numberline, there are infinitely many rational numbers, and infinitely many irrational numbers for each of those rational numbers. Yet between any two irrational number there exists a rational number inbetween them.
    I guess the pigeon hole theorem doesn’t really hold once we have infinite holes.

  • @Nia-zq5jl
    @Nia-zq5jl Месяц назад

    Damn, how they become continuous by themselves?

  • @zunaidparker
    @zunaidparker Месяц назад

    Still waiting to hear what the Fourier transform is...this was false advertising 😂

  • @smorrow
    @smorrow Месяц назад

    Anyone remember when RUclips was literally just cat videos? Yeah... I dropped out of maths at university right before the change happened.

  • @vinuthomas7193
    @vinuthomas7193 Месяц назад

    How can it be continuous on just the rationals if there are irrationals in between? How would such a function even be defined?

  • @bebemichelin425
    @bebemichelin425 Месяц назад

    I'm pretty sure his name's pronounced Deer-ee-cleh rather than deer-ee-shleh, at least that's how Wikipedia and my professor say his name

  • @bigzigtv706
    @bigzigtv706 Месяц назад

    I thought there were more rationals than irrationals

  • @Charij_
    @Charij_ Месяц назад

    This makes intuitive sense to me, but wouldn't this also prove that there is an equal number of rational and irrational numbers?

  • @vsm1456
    @vsm1456 Месяц назад

    The emphasis in "Dirichlet" is on "e", not on either of "i".

  • @Vincent-kl9jy
    @Vincent-kl9jy Месяц назад +3

    Does this have any applications for quantum mechanics and super positions?

  • @natewright1197
    @natewright1197 Месяц назад

    "Restricting it to just the rationals or just the irrationals, the function becomes continuous"...but it is not defined at every point, correct?
    So if we say y=1 for x=rational, then we pick an irrational number (x = pi), then the function y becomes undefined. Therefore, the function is not continuous because it has to be defined for all x.

    • @alexanderf8451
      @alexanderf8451 Месяц назад +6

      If you restrict it to the rationals then you can't pick an irrational number, it doesn't exist in the domain of the function.

    • @mirkotorresani9615
      @mirkotorresani9615 Месяц назад

      But the restriction has a new domain, the one you are restricting on.
      And if I have a function f from X to Y, I don't need to have an outside world where X lives in, for speaking about continuity.
      And since our restricted function is constant on all his domain, then it is continuous.
      Since, in absolute generality, a constant function g:X -> Y brween topological spaces is always continous

  • @ucngominh3354
    @ucngominh3354 Месяц назад

    Hi

  • @supthos
    @supthos Месяц назад

    4:45 I think Cantor would disagree, for the set rational numbers cannot constitute a continuum. It is discrete!

    • @ThePiotrekpecet
      @ThePiotrekpecet Месяц назад +1

      It doesn't matter, euclidean metric restricted to Q induces a topology on Q and therefore we can talk about continuity

    • @ThePiotrekpecet
      @ThePiotrekpecet Месяц назад +1

      You can even talk about continuity on Z with discrete metric (but then every function is continuous so it's not as interesting). Topology, and therefore the notion of continuity, can be introduced on any nonempty set

    • @mirkotorresani9615
      @mirkotorresani9615 Месяц назад

      You know that math has advanced a little since Cantor times?

  • @Knuckles2761
    @Knuckles2761 Месяц назад

    >> 4:38 - in fact, restricting the function to just the rationals or just the irrationals gives you a constant function
    No. It gives you a function with infinite number of holes. Function does not exists in that holes or not defined. That is not a constant function.

    • @semicolumnn
      @semicolumnn 17 дней назад

      in R, yes. but were restricting to Q, where it is a constant function. the difference is always 0 so itll always beat any epsilon regardless of the delta.

  • @Xayuap
    @Xayuap Месяц назад +2

    so the function is continuous but not dereivable. ¿Weierstrass?

    • @edsangha3724
      @edsangha3724 Месяц назад +2

      the function is not continuous in R

    • @alexanderf8451
      @alexanderf8451 Месяц назад +4

      No, this function is discontinuous everywhere and thus, unsurprisingly, doesn't have an derivative. Weierstrass's function is continuous everywhere but still has no derivative anywhere, which is even stranger.

    • @Xayuap
      @Xayuap Месяц назад

      what about the length of a weierstrass segment?

  • @ErenDoppleganer
    @ErenDoppleganer Месяц назад

    Siri help

  • @augnix888
    @augnix888 Месяц назад +1

    :O

  • @brockobama257
    @brockobama257 Месяц назад

    I clicked BECAUSE of the clever title

  • @RussellSubedi
    @RussellSubedi Месяц назад

    Does that mean there's an equal number of rational and irrational numbers?

    • @alexanderf8451
      @alexanderf8451 Месяц назад

      No, density and cardinality are different properties of sets.

  • @Utesfan100
    @Utesfan100 Месяц назад +18

    This function is 0 almost everywhere, so it might as well be 0.

    • @SpinDip42069
      @SpinDip42069 Месяц назад +35

      Imagine how useless mathematics would be if we applied your logic to everything

    • @brightblackhole2442
      @brightblackhole2442 Месяц назад +27

      @@SpinDip42069 "real numbers are irrational almost everywhere so they might as well all be irrational"

    • @lumina_
      @lumina_ Месяц назад +1

      what.

    • @cara-setun
      @cara-setun Месяц назад +29

      The engineer

    • @Malthusia
      @Malthusia Месяц назад

      @@cara-setunreal

  • @canyoupoop
    @canyoupoop Месяц назад

    I guess you could say Dirichlet's function is pretty much...broken

  • @douglasstrother6584
    @douglasstrother6584 Месяц назад +1

    My Calculus Professor dropped this on us at the end of a Friday lecture to give something to discuss at Happy Hour.

  • @PaprikaX33
    @PaprikaX33 Месяц назад +6

    I'm sure if the function is discovered in 1900s it would be called schrödinger function. f(x) is in superposition of both 1 and 0 until x is observed to either be rational or irrational. Upon observation f(x) collapses to either 0 or 1.

    • @edsangha3724
      @edsangha3724 Месяц назад +1

      very cool link to physics here maboi

    • @philipoakley5498
      @philipoakley5498 Месяц назад +1

      Love it. !

    • @semicolumnn
      @semicolumnn 17 дней назад

      Probably not... unless Schrödinger were to come up with it. In reality it would probably be called the indicator function on Q, since the reluctance of mathematicians to name things after people increases with time.