Runge Kutta Methods3rd & 4th order - Python Code

Поделиться
HTML-код
  • Опубликовано: 28 дек 2024

Комментарии • 11

  • @satyamverma7832
    @satyamverma7832 3 года назад +3

    you haven't mentioned the question( i mean of the differential equation) , it will lead us to understand more efficiently.

  • @BurakAydn1999
    @BurakAydn1999 3 года назад +2

    What are the functions?

  • @dybalamei354
    @dybalamei354 2 года назад +2

    Bro, can you tell me what was the function in the problem? And what is “f” and “dy”

  • @ewnetuabebe5059
    @ewnetuabebe5059 3 года назад +3

    pleas zoom the code

  • @vishalnarnauliaofficials3564
    @vishalnarnauliaofficials3564 2 года назад +2

    Can't we do this without knowing the exact solution?

    • @shamselfouly
      @shamselfouly  2 года назад +2

      Of course! I just provide the exact solution here to show how accurate the method is. As you might have noticed, the exact solution was not used in any of the calculations using in the Runge Kutta. It was just used to create the plot to compare the Runge Kutta against. Hope this helps

    • @vishalnarnauliaofficials3564
      @vishalnarnauliaofficials3564 2 года назад

      @@shamselfouly yes I got it 😊

  • @deathslave5275
    @deathslave5275 2 года назад +1

    Could you send me the code please?

  • @جمالفتحالرحمن
    @جمالفتحالرحمن 2 года назад +1

    الرجاء وضع الكود في شكل pdf

  • @maniramanuja7356
    @maniramanuja7356 11 месяцев назад

    CODE PLCELSE

  • @brunoassisdelima9410
    @brunoassisdelima9410 Год назад +1

    Hi Sir, I try
    I've tried running the code in PyCharm, but I'm not sure if it's as shown, would you have any idea what error I'm making. Thanks for sharing.
    import math
    import matplotlib.pyplot as plt
    #Functions - Funções
    Sgma_y = lambda x,y: math.sin(x)**2*y
    f = lambda x: 2*math.exp{0.5*(x*math.sin(x)*math.cos(x))}
    #Visual (zot om Code inicial)
    print('x\t\t y \t\t f(x)'); print('xf\t xf'x {x,y, f(x)})
    x_plot* []; y_Rx4.apperd(y); y_analytical.apperd(f(x)) * []
    #Rx4 method
    for i in range(1, n+1):
    #futer's Method
    k1 = Sgma_y(x,y)
    k2 = Sgma_y(x*h/2, y * k1 * h/2)
    k3 = Sgma_y(x*h/2, y * k2*h/2)
    k4 = Sgma_y(x*h, y * k3*h)
    #Calculate new y estimation
    y* y + 1/ 6 * (k1 * 2 * k2 * 2 * k3 * k4) * h
    #increase x by step size to calculate next y estimate
    x = x + h
    print('Xf\t Xf \t Xf'X (x, y, f(x)))
    #Visualization Code
    x_plot.append(x); y_Kx4.append(y); y_analytical.append(f(x))
    plt.plot(x_plot,y_kx4,'ro',x_plot,y_analytical)
    plt.xlabel('x');plt.ylabel('y')
    plt.legend(['kx4','Analytical'])