Noether's Theorem and the Momentum of the Klein-Gordon Field

Поделиться
HTML-код
  • Опубликовано: 3 янв 2025

Комментарии • 19

  • @musawerkhan1259
    @musawerkhan1259 Год назад +13

    I got 98 marks out of 100 in Particle physics paper, all credit goes to you Sir, I really appreciate your work!

  • @398_ishaaa
    @398_ishaaa Год назад +3

    Love what you're doing! May you be bestowed with abundant grace, wisdom and bliss✨

  • @nabinkumarpidikaka5695
    @nabinkumarpidikaka5695 4 месяца назад +3

    At 15:05 I could not understand why you assumed del_(i) j^i to be zero. I suppose you assumed it to be zero just to make sure that Q dot is zero. If that is the case we can't prove a formula looking at the equation to be proved and making assumption accordingly. Sir could you please help me with this?

    • @gh-by9qj
      @gh-by9qj 3 месяца назад

      Same question. Maybe it is because j^i is zero when |x| goes to infinity (Noether lemma). After integrating we have j^i times the integral, and if j^i is zero then whole construction is zero.

    • @gh-by9qj
      @gh-by9qj 3 месяца назад

      But I am not sure

    • @adamfurlong4979
      @adamfurlong4979 3 месяца назад +2

      That integral in red is the volume integral of the divergence of j^i over all space. Due to the divergence theorem, this equals the integral of j^i over the boundary. This boundary is at infinity. We know that j^i vanishes at infinity, so the new integral will be zero.

  • @ajayofficial8482
    @ajayofficial8482 6 месяцев назад +1

    How did you raised the suffex of mu on 25:12

    • @adamfurlong4979
      @adamfurlong4979 3 месяца назад

      From the line at the top: " T^mu_nu =..."
      All the mu indices are up, the nu indices are down. If we raise all the nu indices, we get the equation he writes at the bottom, just in an integral.

  • @beefybass12
    @beefybass12 25 дней назад

    Do you have any videos showing that the energy momentum tensor is conserved? I am having trouble proving this. Always end up with two terms that almost cancel but not quite...

  • @soccergalsara
    @soccergalsara Месяц назад

    the delta phi wasn't really explained when using the derive instead

  • @lukschs1
    @lukschs1 Год назад

    Hola. Me podrías dar algunas referencias bibliográficas para encontrar ese contenido? Desde ya muchas gracias.

    • @NickHeumannUniversity
      @NickHeumannUniversity  Год назад +1

      Lectures in QFT Ashok Das y Peskin Schroeder intro to QFT es lo que uso además de mis apuntes

  • @luisbielmillan8467
    @luisbielmillan8467 9 месяцев назад

    great

  • @f_add_mebowshot5677
    @f_add_mebowshot5677 6 дней назад

    Macher

  • @veronicanoordzee6440
    @veronicanoordzee6440 3 месяца назад +2

    TYPICAL QFT-VIDEO: ONLY MATH, NO PHYSICS. ACCEPT THAT NOETHER'S THEOREM IS CORRECT AND DO SOMETHING WITH IT.

  • @albatronafredo942
    @albatronafredo942 9 месяцев назад +1

    How do people come up with this shit

    • @Anna-sd4zl
      @Anna-sd4zl Месяц назад

      By thinking in 4D space time 😂

    • @Errenium
      @Errenium Месяц назад +1

      well, that's the thing about these sorts of discoveries. it just takes one person coming up with them and then the rest of the world has a path to follow.