int (ln (x+sqrt(x^2 -1))

Поделиться
HTML-код
  • Опубликовано: 29 ноя 2024

Комментарии • 37

  • @chinmaykowshik5161
    @chinmaykowshik5161 8 месяцев назад +15

    the inside of the the integral at the beginning is actually inverse hyperbolic cosine x

    • @miloradtomic
      @miloradtomic 8 месяцев назад +6

      It's nice.

    • @AlbertTheGamer-gk7sn
      @AlbertTheGamer-gk7sn 8 месяцев назад +1

      ∫arccosh(x)dx
      u = arccosh(x)
      d(arccosh(x))/dx = 1/(sinh(arccosh(x)))
      cosh^2(x)-sinh^2(x)=1
      -sinh^2(x)=1-cosh^2(x)
      sinh^2(x)=cosh^2(x)-1
      sinh(x)=√cosh^2(x)-1
      d(arccosh(x))/dx = 1/(√cosh^2(arccosh(x))-1)
      = 1/(√x^2-1)
      du = dx/√x^2-1
      dv = dx
      v = x
      ∫udv = uv - ∫vdu
      ∫arccosh(x)dx = x*arccosh(x) - ∫xdx/(√x^2-1)
      = x*arccosh(x) - √x^2-1 + C

  • @Red_Angel-dw4cv
    @Red_Angel-dw4cv 2 дня назад

    The handwriting is beautiful

  • @aiersentayier6511
    @aiersentayier6511 8 месяцев назад +3

    Your explanation is great, I support you..😃😃

  • @JourneyThroughMath
    @JourneyThroughMath 8 месяцев назад +4

    Gonna admit, the square root spooked me so I started with a trig sub, it gave me ln(secx+tanx)

    • @miloradtomic
      @miloradtomic 8 месяцев назад +1

      To be continued in all beauty...

    • @raivogrunbaum4801
      @raivogrunbaum4801 8 месяцев назад

      Wrong substitution put x=cosh t then you get ln(sinh t+cosh t)=ln(e^t)=t

    • @JourneyThroughMath
      @JourneyThroughMath 8 месяцев назад

      @@raivogrunbaum4801 not terribly familiar with hyperbolic trig. Didnt think of it. Good idea though!

    • @nanamacapagal8342
      @nanamacapagal8342 4 месяца назад

      ​@@raivogrunbaum4801 there is no such thing as a wrong sub as long as it works

  • @biswambarpanda4468
    @biswambarpanda4468 8 месяцев назад +1

    Wonderful my great sir...long live

  • @skwbusaidi
    @skwbusaidi 6 месяцев назад

    We can set x= sect
    dx = sect tant dt
    Then we do integeration by part
    Differciate the ln and Integerate the rest ( sect tan t)

  • @holyshit922
    @holyshit922 4 месяца назад

    I found in my tables following integral
    \int_{\theta}^{\pi}\frac{\sin((n+\frac{1}{2})t)}{\sqrt{2(\cos(\theta)-\cos(t))}}\mbox{d}t
    Newton , you can try to calculate this integral on one of your video
    I used integration by parts combined with some trigonometric identities
    to get reduction formula for this integral but maybe you will find other way to calculate this integral

  • @808spvrk
    @808spvrk 7 месяцев назад

    Substitute x=cosθ inside the natural log becomes e^iθ and youll get -i(int θsinθ dθ) wich can easily be solved by ibp

  • @jumpman8282
    @jumpman8282 8 месяцев назад

    At first glance this integral looked very daunting and knowing Newton I thought it was going to be another trick question!
    But I couldn't come up with anything clever, so in the end I had to resort to differentiating the integrand and was surprised by how neatly it collapsed down.

  • @kevinmadden1645
    @kevinmadden1645 8 месяцев назад

    Let x equal secant theta and integrate by parts. The solution is relatively straightforward .

  • @Th3OneWhoWaits
    @Th3OneWhoWaits 8 месяцев назад +1

    4:57 Sir, how can you cancel when the sqrt of (x^2)-1 are still being added to x?

    • @PrimeNewtons
      @PrimeNewtons  8 месяцев назад +1

      Canceled everything. Watch again.

    • @Th3OneWhoWaits
      @Th3OneWhoWaits 8 месяцев назад

      @@PrimeNewtons Thank you. I was not watching closely enough.

  • @MASHabibi-d2d
    @MASHabibi-d2d 8 месяцев назад

    Thanks for an other video master

  • @mirzatayerejepbayev8367
    @mirzatayerejepbayev8367 8 месяцев назад

    Good job

  • @surendrakverma555
    @surendrakverma555 8 месяцев назад

    Thanks Sir

  • @lhopital2132
    @lhopital2132 8 месяцев назад

    sir please give problems based on integration of hyperbolic functions

  • @Moj94
    @Moj94 8 месяцев назад +1

    du=dx/sqrt(x^2-1)

  • @miloradtomic
    @miloradtomic 8 месяцев назад +1

    There is a little mistake. But nevermind.

    • @Occ881
      @Occ881 8 месяцев назад +2

      I see no mistake in there

    • @jumpman8282
      @jumpman8282 8 месяцев назад

      @@Occ881 He forgot the 𝑑𝑥 when writing 𝑑𝑢 in terms of 𝑥. Other than that, the solution was flawless.

    • @JSSTyger
      @JSSTyger 8 месяцев назад +1

      ​@@Occ881 He forgot to mention that he copied my test answer. Ill let it slide :D

  • @qetuoa13579gjlxvn
    @qetuoa13579gjlxvn 8 месяцев назад +1

    You are Beautiful 🎉🎉🎉

  • @JosephOnyango-s6l
    @JosephOnyango-s6l 8 месяцев назад

    Help me solve,, cos x +1 from first principle method

  • @lhopital2132
    @lhopital2132 8 месяцев назад +2

    ∫ cosh⁻¹x dx = x cosh⁻¹x - (√x²-1 )+c

    • @AlbertTheGamer-gk7sn
      @AlbertTheGamer-gk7sn 8 месяцев назад

      ∫arccosh(x)dx
      u = arccosh(x)
      d(arccosh(x))/dx = 1/(sinh(arccosh(x)))
      cosh^2(x)-sinh^2(x)=1
      -sinh^2(x)=1-cosh^2(x)
      sinh^2(x)=cosh^2(x)-1
      sinh(x)=√cosh^2(x)-1
      d(arccosh(x))/dx = 1/(√cosh^2(arccosh(x))-1)
      = 1/(√x^2-1)
      du = dx/√x^2-1
      dv = dx
      v = x
      ∫udv = uv - ∫vdu
      ∫arccosh(x)dx = x*arccosh(x) - ∫xdx/(√x^2-1)
      = x*arccosh(x) - √x^2-1 + C

  • @AlbertTheGamer-gk7sn
    @AlbertTheGamer-gk7sn 8 месяцев назад

    ∫arccosh(x)dx
    u = arccosh(x)
    d(arccosh(x))/dx = 1/(sinh(arccosh(x)))
    cosh^2(x)-sinh^2(x)=1
    -sinh^2(x)=1-cosh^2(x)
    sinh^2(x)=cosh^2(x)-1
    sinh(x)=√cosh^2(x)-1
    d(arccosh(x))/dx = 1/(√cosh^2(arccosh(x))-1)
    = 1/(√x^2-1)
    du = dx/√x^2-1
    dv = dx
    v = x
    ∫udv = uv - ∫vdu
    ∫arccosh(x)dx = x*arccosh(x) - ∫xdx/(√x^2-1)
    = x*arccosh(x) - √x^2-1 + C

  • @jud.ravindra_
    @jud.ravindra_ 16 дней назад

    Solve this int x√x²-1dx 🙏

  • @lhopital2132
    @lhopital2132 8 месяцев назад +1

    ∫ ln(x+ √x²-1 ) dx = ∫ cosh⁻¹x dx

    • @AlbertTheGamer-gk7sn
      @AlbertTheGamer-gk7sn 8 месяцев назад

      ∫arccosh(x)dx
      u = arccosh(x)
      d(arccosh(x))/dx = 1/(sinh(arccosh(x)))
      cosh^2(x)-sinh^2(x)=1
      -sinh^2(x)=1-cosh^2(x)
      sinh^2(x)=cosh^2(x)-1
      sinh(x)=√cosh^2(x)-1
      d(arccosh(x))/dx = 1/(√cosh^2(arccosh(x))-1)
      = 1/(√x^2-1)
      du = dx/√x^2-1
      dv = dx
      v = x
      ∫udv = uv - ∫vdu
      ∫arccosh(x)dx = x*arccosh(x) - ∫xdx/(√x^2-1)
      = x*arccosh(x) - √x^2-1 + C

  • @gautamchoubey1275
    @gautamchoubey1275 8 месяцев назад

    Dear sir I gmail you please solve the problem 😢