Can you calculate the angle X? | (Justify your answer) |

Поделиться
HTML-код
  • Опубликовано: 16 ноя 2024

Комментарии • 45

  • @ap3xmath123
    @ap3xmath123 3 дня назад +3

    Your methods are so unique!!! Beautiful

    • @PreMath
      @PreMath  3 дня назад

      Thanks for the kind words! ❤️

  • @marioalb9726
    @marioalb9726 День назад +2

    Triangle ADF:
    x + α + β = 180°
    α = 77° (Vertex F)
    β = 33° (Vertex D)
    x = 180°-77°-33° = 70° ( Solved √ )

  • @35-prakharroy-8e2
    @35-prakharroy-8e2 3 дня назад +2

    Great Question

    • @PreMath
      @PreMath  3 дня назад

      Glad to hear that!
      Thanks for the feedback ❤️

  • @jamestalbott4499
    @jamestalbott4499 3 дня назад

    Thank you!

  • @-wx-78-
    @-wx-78- 3 дня назад +4

    Arc DEFB is twice the ∡C (i.e. 154°), then arc BCPD is 360°−154° = 206°. Arc EF is twice the ∡P (66°).
    x = ½(⌒BCPD−⌒EF) = 70° as the angle between two secants.

    • @PreMath
      @PreMath  3 дня назад +1

      Excellent!
      Thanks for sharing ❤️

  • @jimlocke9320
    @jimlocke9320 3 дня назад +4

    • @PrithwirajSen-nj6qq
      @PrithwirajSen-nj6qq 3 дня назад +1

      I do like it.

    • @PreMath
      @PreMath  3 дня назад +1

      That's a great step-by-step explanation! It's clear and easy to follow.
      Thanks for sharing ❤️

    • @jimlocke9320
      @jimlocke9320 3 дня назад +1

      @PrithwirajSen-nj6qq and@@PreMath Thank you for the compliments!

  • @trishanuagarwal9220
    @trishanuagarwal9220 3 дня назад

    Sir u r doing a very good job
    I have never seen such a consistent maths questioner
    Keep bringing quality questions pls❤

  • @quigonkenny
    @quigonkenny 3 дня назад +1

    Draw DF. As both D and P are on the circumference and ∠EDF and ∠EPF both subtend arc EF, them ∠EDF = ∠EPF = 33°.
    As AB is a straight line, ∠DFB is an exterior angle to triangle ∆AFD at F, so ∠DFB = ∠FDA+∠DAF = 33°+x.
    As DFBC is a cyclic quadrilateral, its opposite vertices must sum to 180°.
    ∠DFB + ∠BCD = 180°
    33° + x + 77° = 180°
    x + 110° = 180°
    x = 180° - 110°
    [ x = 70° ]

  • @SkinnerRobot
    @SkinnerRobot 3 дня назад +1

    I had no idea the solution would be so simple. Another satisfying video to review some principles of angle geometry. Thank you very much, PreMath.

    • @PreMath
      @PreMath  3 дня назад

      Excellent!
      Glad to hear that!
      Thanks for the feedback ❤️

  • @alexundre8745
    @alexundre8745 3 дня назад +1

    Bom dia Mestre
    Muito Obrigado por mais uma aula
    Grato

    • @PreMath
      @PreMath  3 дня назад

      Glad to hear that!
      You are very welcome!
      Thanks for the feedback ❤️🙏

  • @marcgriselhubert3915
    @marcgriselhubert3915 3 дня назад +1

    Fine.

    • @PreMath
      @PreMath  3 дня назад

      Thanks for the feedback ❤️

  • @TurquoizeGoldscraper
    @TurquoizeGoldscraper 3 дня назад

    The angle P is on a circle so the arc EF is double the angle of P: EF = 2P = 2 * 33 = 66.
    The angle of E through F, back to E and stopping at F is a full circle + EF: Circle + EF = 360 + 66 = 426.
    That large arc can be split into two smaller arcs: EFBC and CPDE: EFBC + CPDE = 426.
    Angles B and D are on the circle and match the above arcs, there their angles are half of the arcs: B + D = 0.5 * (EFBC + CPDE) = 0.5 * 426 = 213.
    A quadrilateral has angles adding up to 360: B + C + D + x = 360.
    B + C + D + x = 360
    x = 360 - (B + C + D)
    x = 360 - (B + D) - C
    x = 360 - 213 - 77
    x = 70
    Therefore, angle x is 70 degrees.

  • @zdrastvutye
    @zdrastvutye 2 дня назад

    sometimes people must eat what's on the table.
    it is remarkable the angle x does neither depend on "w01=" in line 30 nor on "wkr=" in line 80. important is to consider that line fp and line bc are parallel:
    10 print "premath-can you calculate the angle x"
    20 dim x(1,3),y(1,3):n1=1:n2=3:yvi=850:xvi=1200
    30 w01=15:w1=77:w2=33:r=1:xm=r:ym=r:x(0,0)=r*.8:y(0,0)=ym-sqr(r*r-(x(0,0)-xm)^2)
    40 print y(0,0):wu=w01:xu=x(0,0):yu=y(0,0):gosub 50:goto 70
    50 px=(xu-xm)*cos(rad(wu)):py=(yu-ym)*sin(rad(wu)):p=px+py:q=r*r-(xu-xm)^2-(yu-ym)^2
    60 lu=-p+sqr(p*p+q):dx=lu*cos(rad(wu)):dy=lu*sin(rad(wu)):xn=xu+dx:yn=yu+dy:return
    70 x(0,1)=xn:y(0,1)=yn:wu=180+wu-w1:xu=x(0,1):yu=y(0,1):gosub 50:x(0,2)=xn:y(0,2)=yn
    80 wkr=200:dx=r*cos(rad(wkr)):dy=r*sin(rad(wkr)):x(1,0)=xm+dx:y(1,0)=ym+dy:xs1=x(1,0):ys1=y(1,0)
    90 wu=w01:xu=xs1:yu=ys1:gosub 50:x(1,1)=xn:y(1,1)=yn:xu=xn:yu=yn:print xn,yn:wu=180+wu-33
    100 gosub 50:xs2=xn:ys2=yn:x(1,2)=xn:y(1,2)=yn:x(0,3)=x(1,2):y(0,3)=y(1,2)
    110 xg11=x(1,0):yg11=y(1,0):rem einen geradenschnittpunkt berechnen
    120 xg12=x(0,0):yg12=y(0,0):xg21=xs2:yg21=ys2:xg22=x(0,2):yg22=y(0,2)
    130 a11=yg12-yg11:a12=xg11-xg12:a131=xg11*(yg12-yg11):a132=yg11*(xg11-xg12)
    140 a21=yg22-yg21:a22=xg21-xg22:a231=xg21*(yg22-yg21):a232=yg21*(xg21-xg22)
    150 a13=a131+a132:a23=a231+a232
    160 ngl1=a12*a21:ngl2=a22*a11
    170 ngl=ngl1-ngl2:if ngl=0 then print "keine loesung":end
    180 zx1=a23*a12:zx2=a13*a22:zx=zx1-zx2
    190 zy1=a13*a21:zy2=a23*a11:zy=zy1-zy2
    200 xl=zx/ngl:yl=zy/ngl:print "x=";xl;"y=";yl:x(1,3)=xl:y(1,3)=yl
    210 for a=0 to n1:for b=0 to n2:x=x(a,b):y=y(a,b)
    220 sux=sux+x:suy=suy+y:anz=anz+1:next b:next a
    230 mittelx=sux/anz:mittely=suy/anz:goto 250
    240 xb=x-xmin:xb=xb*mass:yb=y-ymin:yb=yb*mass:return
    250 xmin=mittelx:ymin=mittely:xmax=xmin:ymax=ymin
    260 for a=0 to n1:for b=0 to n2:x=x(a,b):y=y(a,b)
    270 if xxmax then xmax=x
    290 if yymax then ymax=y
    310 next b:next a:if xmin=xmax or ymin=ymax then else 350
    320 if xmin=xmax then else 340
    330 mass=yvi/ymin-ymax):goto 360
    340 mass=xvi/(xmin-xmax):goto 360
    350 masx=xvi/(xmax-xmin):masy=yvi/(ymax-ymin):if masx1 then stop else w=deg(acs(cw)):print "der winkel x=";w
    440 a$=inkey$(0):if a$="" then 440
    premath-can you calculate the angle x
    0.0202041029
    1.984807751.17364818
    x=-0.589731019y=1.21845419
    der winkel x=70
    run in bbc basic sdl and hit ctrl tab to copy from the results window.

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq 3 дня назад +1

    We may join EB.
    Exterior ang BED of 🔺 ABE= x + ABE --- (1)
    ang ABE= ang EPF =33 degs (both are inscribed on same arc) -(2)
    any BED = 180 -77=103 degs (as
    BECD is a cyclic quadrilateral) ---(3)
    From (1),(2)& (3)
    x = 103-33=70 degs

    • @PreMath
      @PreMath  3 дня назад

      Excellent!
      Thanks for sharing ❤️

  • @envyofmen
    @envyofmen 3 дня назад

    Solution is very simple. Minor EF is 66° and major DB is 206°. x is equal to 1/2(206 - 66) which is 70°.

  • @michaeldoerr5810
    @michaeldoerr5810 3 дня назад +1

    This is an example of "easier than it looks"!!!. I am kind of thinking that maybe you should make a playlist of problems solvable by the Insribed Angle Theorem or Cyclic Quadrilateral theorem. Also the x = 70°. I better use that for practice in order to autment to end my geometry training so that I can be an expert mathematician!!!

    • @PreMath
      @PreMath  3 дня назад

      Excellent!
      Thanks for the feedback ❤️

  • @DB-lg5sq
    @DB-lg5sq 2 дня назад

    شكرا لكم على المجهودات
    يمكن استعمال
    x+D+C+B=360
    E+F+D+C+B=540
    (E+F)-x=180
    x=1/2(206+FB+206 +ED)-180
    =206+44-180
    =70

  • @imrannadafnadaf1063
    @imrannadafnadaf1063 3 дня назад

    x=(marcDPC-marcEF) /2
    =(206-66) /2=70

  • @prossvay8744
    @prossvay8744 3 дня назад +2

    X=70°>❤❤❤

    • @PreMath
      @PreMath  3 дня назад

      Excellent!
      Thanks for sharing ❤️

  • @nandisaand5287
    @nandisaand5287 3 дня назад

    Ordinarily I give Professor PreMath's problems a good shake before watching the solution. I stared at this one all of three minutes and knew Id never get it. Some of these "theorems" Prof whips out are so obscure and esoteric...

    • @PreMath
      @PreMath  3 дня назад

      Thanks for the feedback ❤️

  • @wackojacko3962
    @wackojacko3962 3 дня назад +1

    Gonna do the YMCA dance now! 🙂

    • @PreMath
      @PreMath  3 дня назад +1

      😀
      Thanks for the feedback ❤️

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 3 дня назад +3

    STEP-BY-STEP RESOLUTION PROPOSAL :
    01) Inscribed Angle (BCD) = 77º
    02) Central Angle (BOD) = 77º * 2 = 154º
    03) Arclength (BEFD) = 154º
    04) Arclength (BCPD) = 360º - 154º = 206º
    05) Inscribed Angle (EPF) = 33º
    06) Central Angle (EOF) = 66º
    07) Arclength (EF) = 66º
    08) X = (206º - 66º) / 2
    09) X = 140º / 2
    10) X = 70º
    Thus,
    OUR BEST ANSWER :
    Angle X equal to 70º.

  • @adreeshdas9628
    @adreeshdas9628 3 дня назад

    70 degrees without pen and paper

  • @mikeli9532
    @mikeli9532 3 дня назад

    70 degrees.

  • @Emerson_Brasil
    @Emerson_Brasil 3 дня назад +2

    *Solution:*
    x = (bow BCPD - bow EF)/2
    bow BCPD= 360° - bow BEFD
    bow BCPD= 360° - 77°×2
    bow BCPD= 360° - 154° = 206°
    bow EF = 33° × 2 = 66°.
    Therefore,
    x = (206° - 66°)/2 → *x = 70°*

  • @와우-m1y
    @와우-m1y 3 дня назад

    asnwer=120 is it

    • @와우-m1y
      @와우-m1y 3 дня назад

      asnwer=70 what what why