Solving A Nice Radical

Поделиться
HTML-код
  • Опубликовано: 3 янв 2025

Комментарии • 10

  • @erikroberts8307
    @erikroberts8307 Месяц назад +1

    Excellent!!!

  • @DrQuatsch
    @DrQuatsch 2 дня назад

    I used the "first method", I just made a short cut after cubing, as I noticed 4x + 4 is just 4 * (x + 1), so after squaring I got 16 * (x + 1)^2 = (x^2 + 8x + 16)(x + 1). Put everything on the same side and you already have your (x + 1) factor and the 16s cancel. So you are left with (x + 1)(x^2 - 8x) = 0 or x(x + 1)(x - 8) = 0.

  • @dan-florinchereches4892
    @dan-florinchereches4892 Месяц назад

    We can observe X=0 and X=-1 verify the original equation.
    If X=y^3 this corresponds 1-1 on the domain and we get
    √(y^3+1)-y=1
    √(y^3+1)=1+y square everything
    y^3+1=y^2+2y+1
    y(y^2-y-2)=0
    y(y+1)(y-2)=0
    So we can have y€{-1,0,2}
    So x€{-1,0,8}
    Checking X=8 to verify
    √9-8^(1/3)=3-2=1 is a solution

  • @wongmanwaihehe
    @wongmanwaihehe Месяц назад +1

    Subbing in 0 is the first thing in my mind

  • @Quest3669
    @Quest3669 Месяц назад

    Lets x= a^3 to easily drove through 3 answrs

  • @فیروزاهنگری
    @فیروزاهنگری Месяц назад

    x+1=t^2 ,t-1=(t^2-1)^1/3 ,(t-1)^3=t^2--1 ,t(t-3)(t-1)=0 ,t=0,t=3,t=1. then. X=-1. ,8. ,0

  • @prollysine
    @prollysine Месяц назад

    let u=x^(1/3) , x=u^3 , u^3+1=1+2u+u^2 , u^3-u^2-2u=0 , u(u^2-u-2)=0 , u=0 , u^3=0 , x=0 , u^2-u-2 , u=(1+/-V(1+8))/2 ,
    u= (1+3)/2 , (1-3)/2 , u= 2 , -1 , x=u^3 , x= 0 , 8 , -1 , test , x=0 , V(0+1)-0=1 , OK ,
    test , x=8 , V9-(8)^(1/3)=3-2 , --> 1 , OK , test , x= -1 , V(-1+1)-(-1)^(1/3)=0+1 , --> 1 , OK , solu , x= 0 , 8 , -1 ,

  • @mega_mango
    @mega_mango Месяц назад

    x^1/3 = n
    n³+1 = (n+1)²
    (n+1)(n²-2n) = (n+1)(n-2)n = 0
    n = {-1,0,2}
    x = n³ = {-1,0,8}

    • @robertveith6383
      @robertveith6383 Месяц назад

      The first line is wrong. The fractional exoonent must be inside grouping symbols: x^(1/3).

    • @mega_mango
      @mega_mango Месяц назад

      @@robertveith6383 cry about it