Can you find the area of the Green shaded region? | (Quarter circle in a square) |

Поделиться
HTML-код
  • Опубликовано: 3 фев 2025
  • Learn how to find the area of the Green shaded region. Quarter circle is inscribed in a square. Important Geometry and Algebra skills are also explained: area of a triangle formula; area of a sector formula; Pythagorean theorem. Step-by-step tutorial by PreMath.com
    Today I will teach you tips and tricks to solve the given olympiad math question in a simple and easy way. Learn how to prepare for Math Olympiad fast!
    Step-by-step tutorial by PreMath.com
    • Can you find the area ...
    Need help with solving this Math Olympiad Question? You're in the right place!
    I have over 20 years of experience teaching Mathematics at American schools, colleges, and universities. Learn more about me at
    / premath
    Can you find the area of the Green shaded region? | (Quarter circle in a square) | #math #maths
    Olympiad Mathematical Question! | Learn Tips how to solve Olympiad Question without hassle and anxiety!
    #FindGreenArea #Square #QuarterCircle #AreaOfSector #SOHCAHTOA #Radius #AreaOfTriangle #CircleTheorem #GeometryMath #EquilateralTriangle #PythagoreanTheorem #PerpendicularBisectorTheorem
    #MathOlympiad #ThalesTheorem #RightTriangle #RightTriangles #CongruentTriangles
    #PreMath #PreMath.com #MathOlympics #HowToThinkOutsideTheBox #ThinkOutsideTheBox #HowToThinkOutsideTheBox? #FillInTheBoxes #GeometryMath #Geometry #RightTriangles
    #OlympiadMathematicalQuestion #HowToSolveOlympiadQuestion #MathOlympiadQuestion #MathOlympiadQuestions #OlympiadQuestion #Olympiad #AlgebraReview #Algebra #Mathematics #Math #Maths #MathOlympiad #HarvardAdmissionQuestion
    #MathOlympiadPreparation #LearntipstosolveOlympiadMathQuestionfast #OlympiadMathematicsCompetition #MathOlympics #CollegeEntranceExam
    #blackpenredpen #MathOlympiadTraining #Olympiad Question #GeometrySkills #GeometryFormulas #Angles #Height
    #MathematicalOlympiad #OlympiadMathematics #CompetitiveExams #CompetitiveExam
    How to solve Olympiad Mathematical Question
    How to prepare for Math Olympiad
    How to Solve Olympiad Question
    How to Solve international math olympiad questions
    international math olympiad questions and solutions
    international math olympiad questions and answers
    olympiad mathematics competition
    blackpenredpen
    math olympics
    olympiad exam
    olympiad exam sample papers
    math olympiad sample questions
    math olympiada
    British Math Olympiad
    olympics math
    olympics mathematics
    olympics math activities
    olympics math competition
    Math Olympiad Training
    How to win the International Math Olympiad | Po-Shen Loh and Lex Fridman
    Po-Shen Loh and Lex Fridman
    Number Theory
    There is a ridiculously easy way to solve this Olympiad qualifier problem
    This U.S. Olympiad Coach Has a Unique Approach to Math
    The Map of Mathematics
    mathcounts
    math at work
    Pre Math
    Olympiad Mathematics
    Two Methods to Solve System of Exponential of Equations
    Olympiad Question
    Find Area of the Shaded Triangle in a Rectangle
    Geometry
    Geometry math
    Geometry skills
    Right triangles
    imo
    Competitive Exams
    Competitive Exam
    Calculate the Radius
    Equilateral Triangle
    Pythagorean Theorem
    Area of a circle
    Area of the sector
    Right triangles
    Radius
    Circle
    Quarter circle
    coolmath
    my maths
    mathpapa
    mymaths
    cymath
    sumdog
    multiplication
    ixl math
    deltamath
    reflex math
    math genie
    math way
    math for fun
    Subscribe Now as the ultimate shots of Math doses are on their way to fill your minds with the knowledge and wisdom once again.

Комментарии • 54

  • @ProfessorDBehrman
    @ProfessorDBehrman Год назад +1

    Nice problem! Thanks!

    • @PreMath
      @PreMath  Год назад

      Happy to help!
      Thanks a lot ❤️🌹

  • @robertbourke7935
    @robertbourke7935 Год назад

    Excellent exercise

  • @pk2712
    @pk2712 Год назад +1

    Your geometry skills are superb , and so are your detailed solutions .

    • @PreMath
      @PreMath  Год назад

      Glad you like them!
      Thanks a lot ❤️🌹

  • @pushkar7580
    @pushkar7580 Год назад

    That was just too clean explain for the problem 👏👏👏

  • @nassernasser879
    @nassernasser879 Год назад +1

    Excellent and awesome! Nice question and great explanation. Thanks a million!👍👏

    • @PreMath
      @PreMath  Год назад

      Glad you liked it! ❤️🌹

  • @georgebliss964
    @georgebliss964 Год назад +4

    Angle PBC = 15 degrees.
    Area of triangle PBC = 0.5 x 2 x root 2 x sin 15 degrees.
    Root 2 x sin 15.
    Triangle QBC same area, therefore sum of both = 2 x root 2 x sin 15.
    Root 8 x sin 15 = 0.732.
    Area of 30 degree sector = Pi x 4 /12 = Pi /3 = 1.0472.
    Green area = 1.0472 - 0.732 = 0.315.

  • @AdamjacobiGIA
    @AdamjacobiGIA Год назад

    I was so stumped when I saw the thumbnail - as soon as you drew the lines to the radius it all clicked! What a clever puzzle to solve, thank you for sharing it!

  • @hyung-yulcho841
    @hyung-yulcho841 Год назад +1

    The area of 1/4 Circle that includes green area is 1/4(2X2 )X 3.14.units = 3.14 units and there are three 1 by 1 squares, which is 3 square unis altogether. Therefore, 3.14units minus three units are approximately 0,14 units.

  • @Okkk517
    @Okkk517 Год назад

    After establishing the sector PQ subtends angle 30. We calculate PQ from which we infer that PC=CQ=sqrt(3)-1. Then, the result follows as ( sector PBQ - triangle BPQ + triangle PQC) area=pi/3-sqrt(3)+1.

  • @johng7rwf419
    @johng7rwf419 Год назад +1

    Very good

  • @mohabatkhanmalak1161
    @mohabatkhanmalak1161 Год назад +1

    A very interesting problem. Enjoyed watching for the solution, I didn't get but I will now try it out myself as an exercise. Thank you teacher!☀

    • @PreMath
      @PreMath  Год назад

      Thanks my dear friend ❤️🌹

  • @johnfilak4751
    @johnfilak4751 Год назад +1

    Thanks Professor. You the Best😊

    • @PreMath
      @PreMath  Год назад

      You rock! ❤️🌹

  • @phungpham1725
    @phungpham1725 Год назад +1

    By observation (the picture makes me think of the unit circle), we can see the BPG is an equilateral triangle so PD= sqrt3, so PC=sqrt3-1 and the sum of the area of the 2 congruent triangles BCP and BCQ = sqrt3-1
    Area of the green region= Area of the 30 degree sector - area of the sum of BCP and BCQ = pi x 4 /12 - (sqrt3-1)= pi/3 - sqrt3+1

  • @marioalb9726
    @marioalb9726 Год назад +3

    sin α = ½R / R = 1/2
    α = 30°
    Side of green region
    (s +1) = R cos α = 2.√3/2
    s = 0,73205 cm = √3-1
    Area of angular sector:
    A= ½αR² = ½.30°.2²
    A = 1,0472 cm² = π/3
    Area of 2 triangles:
    A = 2 . (½ b.h)
    A = s. R/2 = (√3-1).1
    A = 0,73205 cm² = √3-1
    Area of green region:
    A = A₁ - A₂
    A = 1,0472 - 0,73205
    A = 0,31515 cm² ( Solved √ )

  • @parthtomar6987
    @parthtomar6987 Год назад +2

    Nice solution sir 🎉🎉
    First comment

    • @PreMath
      @PreMath  Год назад

      Thanks dear ❤️

  • @축복이-x6u
    @축복이-x6u Год назад

    asnwer=1 cm isit 1

  • @MrPaulc222
    @MrPaulc222 Год назад +1

    Before viewing: a quick very rough estimate to ensure my final answer is in the correct ballpark. It looks about 1/3 sq un or about (1/10)pi, sq un, depending on the final formatting.
    Quadrant radius is 2, so quadrant area is (4 pi)/4 = pi sq un. BC = sqrt(2) and C to the quadrant’s closest circumference is 2 - sqrt(2). Take C as a new circle centre with radius of 2 - sqrt(2). Green area is ((2 - sqrt(2))^2 * pi
    ((2 - sqrt(2))^2 = 4 - 4*sqrt(2) + 2. Simplify to 6 - 4*sqrt(2), then multiply by pi.
    I'm getting 1.078... which is clearly wrong.
    Aha. It's a smaller quadrant. I forgot to divide by 4. Oops! It's 0.2695... A bit less than my visual, very rough estimate, but close enough for me to go with it.

    • @PreMath
      @PreMath  Год назад

      Thanks ❤️

    • @MrPaulc222
      @MrPaulc222 Год назад

      I went wrong with this one but, more importantly, I now see where and why. It might have been a good idea if I'd realised sooner that C cannot be the circle centre of the smaller quadrant. Ho-hum. I move on :)

  • @幕天席地-w9c
    @幕天席地-w9c Год назад +1

    Alternatively, let M and N be the midpoint of AH and HG, it's easy to calculate the area of AHG, AMP. AMP=QNG, so MPQNH=AHG-2*AMP, PCQ=MCNH - MPQNH

    • @Okkk517
      @Okkk517 Год назад

      How do you calculate the area of AMP ?!

  • @normanc918
    @normanc918 Год назад

    After we find that the sector PBQ is 30 degree, then we can conclude that its area is one third of the sector ABQ which area is pi. The total areas of PBC and QBC = sq root 3 -1, therefore the green area is pi - (sq root 3 -1) = pi - 3 + 1.

    • @NaceerAlassady-x2l
      @NaceerAlassady-x2l Год назад

      Good afternoon....how can drive the relation which make me find the third line of non-right angle triangle.I have the value of the other tow lines and the angle between there.
      Please sir....not the low.....
      I want driving the low.
      Thank you very much

  • @DB-lg5sq
    @DB-lg5sq Год назад +1

    شكرا
    يمكن استعمال حساب التكامل......

  • @Ibrahimfamilyvlog2097l
    @Ibrahimfamilyvlog2097l Год назад +1

    Nice 👍❤

  • @wes9627
    @wes9627 Год назад

    π = area of 1/4 circle; π/3 + √3/2 = area in 1/4 circle above center, and the same area in 1/4 circle to the right of center. Thus, 2(π/3 + √3/2) - 1 = area in 1/4 circle excluding green area, and green area is π - [(2π/3 + √3) - 1] = 0.31515...

  • @randiwijaya9609
    @randiwijaya9609 Год назад +1

    👍

  • @quigonkenny
    @quigonkenny 10 месяцев назад

    Draw BP, BG, and BC. Let M be the midpoint of BG and N be the midpoint of BA. As BP and BG are radii of the quarter circle, BP = BG = 2. As BP = 2 and BM = 1, ∆PMB is a 30-60-90 special right triangle, and PM = √3. By symmetry, QN is also √3. By observation, PC and QC are √3-1.
    Triangle ∆CBP:
    A = bh/2 = (√3-1)1/2 = (√3-1)/2
    By symmetry, ∆CBQ = (√3-1)/2 as well, so quadrilateral CPBQ = √3-1.
    As ∠PBM = 60°, ∠ABP = ∠GBQ = 30°, so ∠PBQ = 90-30-30 = 30°.
    Sector PBQ:
    A = (θ/360)πr² = (30/360)π2² = 4π/12 = π/3
    Green area:
    A = Sector PBQ - CPBQ
    A = π/3 - (√3-1) = 1 + π/3 - √3 ≈ 0.315

  • @dhsanj8877
    @dhsanj8877 Год назад

    Basis triangle BEP the side BE is sqrt3
    Now sides AB and GH are parallel with right angles and sides equal making it square
    Thus, at the centre of square .the intersection will be at right angles meaning green part is quarter circle
    Since mid pointscare connecting
    Further side CP can now be deduced as sqrt3 -1
    Therefore area of green section is pi * (sqrt3 -1)^2 /4

  • @ianmunro5033
    @ianmunro5033 Год назад

    Alternatively, find the difference of the the integral of sqrt(4-x^2) over the intervals [1,2] and [0,1] and add 1.

  • @santiagoarosam430
    @santiagoarosam430 Год назад +1

    Si llamamos T a la proyección ortogonal de Q sobre BG→ QT=1 y QB=2→ El ángulo QBG=30º→ Por simetría, el ángulo en B está trisecado y PBQ=30º→ BT=√3→ CQ=√3 -1 → Área verde = (⊓2²/12)-2(1*CQ/2) =(⊓/3)-(√3 -1)=(⊓/3)+1-√3 =0.3151
    Gracias y un saludo cordial.

    • @PreMath
      @PreMath  Год назад

      Thanks❤️🌹

  • @ybodoN
    @ybodoN Год назад

    Since DB = 1 and the hypotenuse BP = 2, △DBP is a special 30° - 60° - 90° triangle ⇒ PD = √3.
    By symmetry, △BCP ≅ △BCQ with a base of √3 − 1 and a height of 1 for a total area of √3 − 1......➀
    Since the right angle ABG is trisected, the area of the circular sector BPQ is ¹⁄₁₂ π 2² or ⅓ π .........➁
    The green shaded region is ➁ − ➀, that is ⅓ π − (√3 − 1) or 1 − √3 + ⅓ π ≈ 0.315 square units.

  • @beastok
    @beastok Год назад

    I would use calculus for this

  • @DB-lg5sq
    @DB-lg5sq Год назад

    شكرا لكم
    ليكن Xهو المجهول
    و s مساحة القطاع الدائري PBQ
    وb مساحة المثلث PBQ
    وC مساحة المثلث PCQ
    إذن X=s-b+c
    X=pi/3 +(1- جذر 3)

  • @JSSTyger
    @JSSTyger Год назад

    A = 0.315

  • @giuseppemalaguti435
    @giuseppemalaguti435 Год назад +1

    Procedo con geometria e integrali ..π/3-(√3-1)

    • @PreMath
      @PreMath  Год назад

      Thanks ❤️🌹

  • @aljawad
    @aljawad 4 месяца назад

    I resorted to using integral calculus to reach the same result.

  • @Teamstudy4595
    @Teamstudy4595 Год назад +1

    1st Comment

  • @Teamstudy4595
    @Teamstudy4595 Год назад +1

    1st view

    • @PreMath
      @PreMath  Год назад

      Super ❤️🌹