Why is pi here? And why is it squared? A geometric answer to the Basel problem

Поделиться
HTML-код
  • Опубликовано: 26 сен 2024
  • A most beautiful proof of the Basel problem, using light.
    Help fund future projects: / 3blue1brown
    An equally valuable form of support is to simply share some of the videos.
    Special thanks to these supporters: 3b1b.co/basel-t...
    This video was sponsored by Brilliant: brilliant.org/...
    Brilliant's principles list that I referenced:
    brilliant.org/...
    Get early access and more through Patreon:
    / 3blue1brown
    The content here was based on a paper by Johan Wästlund
    www.math.chalme...
    Check out Mathologer's video on the many cousins of the Pythagorean theorem:
    • Visualising Pythagoras...
    On the topic of Mathologer, he also has a nice video about the Basel problem:
    • Euler's real identity ...
    A simple Geogebra to play around with the Inverse Pythagorean Theorem argument shown here.
    ggbm.at/yPExUf7b
    Some of you may be concerned about the final step here where we said the circle approaches a line. What about all the lighthouses on the far end? Well, a more careful calculation will show that the contributions from those lights become more negligible. In fact, the contributions from almost all lights become negligible. For the ambitious among you, see this paper for full details.
    If you want to contribute translated subtitles or to help review those that have already been made by others and need approval, you can click the gear icon in the video and go to subtitles/cc, then "add subtitles/cc". I really appreciate those who do this, as it helps make the lessons accessible to more people.
    Music by Vincent Rubinetti:
    vincerubinetti...
    Thanks to these viewers for their contributions to translations
    Hebrew: Omer Tuchfeld
    ------------------
    3blue1brown is a channel about animating math, in all senses of the word animate. And you know the drill with RUclips, if you want to stay posted on new videos, subscribe, and click the bell to receive notifications (if you're into that).
    If you are new to this channel and want to see more, a good place to start is this playlist: 3b1b.co/recomme...
    Various social media stuffs:
    Website: www.3blue1brow...
    Twitter: / 3blue1brown
    Patreon: / 3blue1brown
    Facebook: / 3blue1brown
    Reddit: / 3blue1brown

Комментарии • 4,5 тыс.

  • @SherinFunmes
    @SherinFunmes 5 лет назад +8428

    *Pi is like an uninvited guest who shows up at every party where he isn't supposed to be*

    • @surfer855
      @surfer855 5 лет назад +131

      Even Mister Bean hates Pi, for showing up at every party he goes to with his teddy bear!

    • @nathanwhitten8950
      @nathanwhitten8950 4 года назад +180

      Maybe a surprise guest--always welcome, especially when not expected!

    • @tahsintarif6864
      @tahsintarif6864 4 года назад +131

      "e" also

    • @EaglePicking
      @EaglePicking 4 года назад +129

      Except ... he actually IS supposed to be there, he was simply uninvited.

    • @perrinii
      @perrinii 4 года назад +54

      pi is the party host.

  • @number-kv8px
    @number-kv8px 4 года назад +3061

    As a Math major,I've read a great amount of solutions to this problem, but this physicly solution amazed me most.

    • @natanielmarquis6159
      @natanielmarquis6159 4 года назад +44

      I'm wondering if this convergence can be easily formulated. I mean, the argument is really intuitive but saying "we let de radius tends to infinity" isn't quite enough. You must control the amount of light from the far away lighthouses in a precise way. Not so intuitive problem of summable families where the number of terms vary...
      However, I totally understand that the rigourous summable families aren't fit for such a video :p

    • @fangzhang9376
      @fangzhang9376 4 года назад +11

      @@natanielmarquis6159 My idea is to ignore all lighthouses with a distance of more than R^0.9 away from the observer. The amount of light from each scales only as O(R^(-1.8)), while the number of them scales only as O(R). As R increases, the arc we are considering becomes longer and longer but also flatter and flatter.

    • @andreamarino95
      @andreamarino95 4 года назад +22

      @Nathaniel: you can go like this:
      Define a_i(n) to be the light emitted by the i-th bulb on the n-th circle, and if i is too big and there is no "i-th bulb" on the n-th circle, just set a_i(n) =0.
      You have that lim_n a_i(n) = (1/i)^2 , and by the above geometric argument you know that, for each n, sum_(i=-\infty) ^(+infty) a_i(n) = pi^2/4. The question is then if you can commute the limit and the infinite sum. The idea is to use Tannery's Theorem to conclude you can.
      Note that a_i(n) is decreasing in n: the i-th bulb has a fixed distance along the n-th circle from zero, but the circles keep flattening, thus the euclidean distance from zero increases.
      Also, note that when the i-th bulb appears is in the topside of the circle, so it has at least a distance of a radius from zero. At each step both the number of bulbs and the radius double, so that the radius of the circle when the i-th bulb appears is proportional to i.
      We conclude that |a_i(n) |

    • @integrando1847
      @integrando1847 3 года назад +1

      the solution of euler is the most simple but very difficult to understand why?

    • @selfull5798
      @selfull5798 3 года назад +1

      @number25 I was wondering what you think about my thoughts about Pi and Phi:
      Phi depends on .5, Division = Diameter
      Diameter = .5 = 1 diameter = 1 degree
      Radius is division of diameter (division of division)
      Phi is diameter x3 divided by/2,
      3 halves, one and a half, 1.5
      Pi is diameter x2 divided by /3,
      2 third, 0.75, one and half of a half
      Phi x3/2
      Pi ×2/3
      Pi
      1/2, 2/3, 3/4, 4/5, 5/6...
      Phi
      2/1, 3/2, 4/3, 5/4, 6/5...
      Pi is multiplication of radius
      Phi is multiplication of diameter
      Basic principle of dividing/equalizing/sharing something in equal parts (itself) and multiplying something in equal parts (by itself)
      Calculating with circles, squares, triangles, bars, etc... it's very interesting if you think of Greek alphabet for example (Pi and Phi) and the first person to ever have to write "numbers" to explain mathematics and wrote it as such 1 2 3 4 5 6 7 8 9 0... and wonder why it was written precisely like that and if it is a "how to" calculate anything using geometry.
      It's easier to see if you put a set square of 360 degrees on a picture of old TVs test pattern for example. 360degrees being 1 circle
      You can calculate anything that way with degrees. You can calculate "nothing" precisely in the process, too as the outside of the circle. The TV and computer invention uses the same pattern and algorithm 4:4:4 of 1234 infinitely.
      Using both properly is an algorithm to multiply divisions or divide multiplications infinitely.
      The Greek alphabet letters are ways to calculate that way for specific functions, as well.
      But Pi and Phi are functions. Trying to give it a value would be like trying to give a value to +,×,÷,=,/, etc...

  • @WilliamFord972
    @WilliamFord972 3 года назад +2056

    Math concept: [exists]
    Euler: “My name is involved in this.”

    • @maxwellsequation4887
      @maxwellsequation4887 3 года назад +19

      Eulaaaaa

    • @kimba381
      @kimba381 3 года назад +31

      @@maxwellsequation4887 Even the Martians know him

    • @jneal1347
      @jneal1347 3 года назад +22

      Soon may the Euler man come

    • @肖博航
      @肖博航 3 года назад +8

      JNeal134 to bring us sugar and tea and run

    • @aashsyed1277
      @aashsyed1277 3 года назад

      @@maxwellsequation4887 HI I WATCH MATH ELITE TOO

  • @박교사-h3m
    @박교사-h3m 2 года назад +530

    As a high school math teacher teaching calculus, this channel has provided wonderful intuitions about how to teach calculus to students in a wonderful way. The essence of calculus will be delivered to students in an interesting way thanks to all people who helped to make this video!

    • @sgs138
      @sgs138 6 месяцев назад +7

      I’m imagining you wheeling in a cart piled with 80 camping lanterns and placing them all over the ground while rambling through the proof and all your students just thinking their teacher is insane. 😄

    • @andrewthomas695
      @andrewthomas695 5 месяцев назад +1

      What I find troubling is that how do you square a number that can't be precisely defined?

  • @battleclan
    @battleclan 4 года назад +5431

    "In honor of Basel" or rather "We had to find something other to name it than 'Euler'"

    • @Goonercry
      @Goonercry 4 года назад +523

      Too many Euler mathematical things 😂

    • @undeniablySomeGuy
      @undeniablySomeGuy 4 года назад +92

      @@Goonercry Euler's little theorem ( ͡° ͜ʖ ͡°)

    • @JackBarlowStudios
      @JackBarlowStudios 4 года назад +775

      There’s a joke that mathematical discoveries are named after the second person who discovered them, because the first is always Euler.

    • @onradioactivewaves
      @onradioactivewaves 4 года назад +104

      @@JackBarlowStudios I thought that was more of a humerous fact than a joke.

    • @antanis
      @antanis 4 года назад +133

      @@onradioactivewaves it's mostly a joke, but euler is incredibly influential nonetheless

  • @s_feles_2642
    @s_feles_2642 Год назад +951

    I love the proof, but what I also find surprising is how the first four digits of π^2/6 are 1.644, like the year 1644 when the problem was first posed!

    • @ANTI_UTTP_FOR_REAL
      @ANTI_UTTP_FOR_REAL 11 месяцев назад +93

      What???? Yo thats a sick coincidence
      Edit: I started a whole conversation just because of a mistake lol

    • @ducksinarow4958
      @ducksinarow4958 10 месяцев назад

      ​@@ANTI_UTTP_FOR_REALsick*

    • @mahdihasan6222
      @mahdihasan6222 9 месяцев назад

      or is it?@@ANTI_UTTP_FOR_REAL

    • @tfg601
      @tfg601 9 месяцев назад +81

      ​@@ANTI_UTTP_FOR_REALI love a suck coincidence!

    • @mrblakeboy1420
      @mrblakeboy1420 9 месяцев назад

      @@ANTI_UTTP_FOR_REAL i’ll suck something else

  • @funkycude57
    @funkycude57 6 лет назад +247

    I've got a final exam to take in 10 hours and here i am watching 3B1B , best channel on RUclips IMO

  • @yds6268
    @yds6268 2 года назад +220

    This is amazing! I have a PhD in physics, and I've never seen this proof. It's probably the best intuitive proof for this theorem!

    • @Taric25
      @Taric25 7 месяцев назад +2

      Oh, yeah, at 13:42 just expand a circle into a flat line and ignore all the geometry he just showed us to accept a handwaved answer...

    • @octs609
      @octs609 6 месяцев назад

      its a limit.@@Taric25

    • @WhoCares-ue5hk
      @WhoCares-ue5hk 5 месяцев назад

      ​@@Taric25 Okay late response, but it's not exactly just expanding the circle. Notice also how the distance between each light house is preserved in expanding the circle. As the size of the circle is doubled, the number of light houses is also doubled, preserving the distance between each light house. Form a circle x^2 + (y-r)^2 = r^2. Intuitively, as you let the circle grow to infinity, more and more of the lighthouses basically touch the x-axis (or the real number line, in this case). Also notice how, in the limit, while the majority of the lighthouses will never actually be on the axis, any values that are elevated off the x-axis would already approach a distance infinitely far away. This would mean that the value of their light is already extremely low based on their distance from the origin alone (not counting vertical distance), as the value of light from that light house would be 1/(infinity)^2, which very quickly approaches zero. This means that the values on the real number line, in the limit, can again be seen as equal to the sum of all lighthouses. Hence, in the limit, it is safe to say that infinitely expanding the circle and keeping its bottom grounded to the origin would preserve the limit.

    • @Taric25
      @Taric25 5 месяцев назад +2

      @@WhoCares-ue5hk, extremely low does not mean zero, especially when considering an infinite sum.

    • @WhoCares-ue5hk
      @WhoCares-ue5hk 4 месяца назад +1

      ​@@Taric25 You're not wrong, but what I'm trying to say is that, as you increase the radius to infinity, more and more of the total length touches the axis, so we can say that as we increase the radius to an obscene amount, we can say that the x-axis is at least a good approximation, and becomes a better and better approximation as the radius increases. As you let the circle grow larger and larger, the part of the circle tangent to the line x = 0 becomes the only part of the circle that we can even "see," and so it becomes basically equivalent to x = 0 at every point.

  • @mariaceciliafp
    @mariaceciliafp 5 лет назад +1453

    "I'm so tired of studying, guess I'll just watch some funny videos on youtube"
    Me 30 seconds later:

    • @moomin8470
      @moomin8470 4 года назад +32

      Maria Cecília This is fun

    • @wisdom6458
      @wisdom6458 4 года назад +19

      Yeah, this is really fun if you know enough to understand :)

    • @xynyde0
      @xynyde0 4 года назад +50

      Maria Cecília you’re not tired of studying. You’re just tired of studying the conventional stuff, the conventional way

    • @CapitalAvenuee
      @CapitalAvenuee 4 года назад +1

      exactly definition jajajajaja

    • @sppss914
      @sppss914 4 года назад +5

      Wisdom not necessary. They just explained everything in such fine details, all that’s needed is just some imagination.

  • @henryg.8762
    @henryg.8762 5 лет назад +4104

    Other mathematicians: QED
    3Blue1Brown: Badaboom badabing

  • @TwoForFlinchin1
    @TwoForFlinchin1 6 лет назад +189

    this channel's quality is unmatched

  • @EvilDudeLOL
    @EvilDudeLOL Год назад +47

    This is incredible. So intuitive that, as a 14 year old kid with not very wide knowledge of calculus, I could understand it all. Splendid explanation- such characteristics are very rare. Thanks a lot, 3b1b, for this absolute masterpiece.

    • @pinkserenade
      @pinkserenade Год назад +13

      Dude, your future is bright! Keep going, keep getting curious

  • @sebastianbg5369
    @sebastianbg5369 3 года назад +84

    The first time you watch a 3b1b video you are puzzled by the new perspective it gives to the most common math problems. Then you incorporate that perspective into the way you solve problems (believing that you already understand everything). Then you watch the video again and new doors open, it's amazing how much ability you have to share knowledge!

  • @megablademe4930
    @megablademe4930 5 лет назад +1739

    I am still in high school but love watching these videos,even tough I didn’t understand 95% of what he was saying.

    • @apollonmegara8220
      @apollonmegara8220 5 лет назад +326

      Im only a toddler and love watching this kind of videos

    • @Rishabh_Joshi_
      @Rishabh_Joshi_ 5 лет назад +33

      I too am in 12 . Even though I can't understand

    • @corpeduhsmathsciteacher8402
      @corpeduhsmathsciteacher8402 5 лет назад +120

      This is magnificent... your brains are building new neuronal connections as you watch and attempt to understand...
      And as you become ACTIVE in using new knowledge, (take notes and as you reproduce the ideas in your own words) you are building new neuron networks. Congratulations, you have just tapped into the process of becomming more intellegent!

    • @ddm1912
      @ddm1912 5 лет назад +25

      @@ViratKohli-jj3wj abbe hindi nahi samjhega yaha pe kisiko 😂

    • @krishivkothari5971
      @krishivkothari5971 5 лет назад +2

      @Timmie Collins Same

  • @shahars3134
    @shahars3134 6 лет назад +566

    Wow! This proof is so beautiful and not that complex.
    I was worried the channel will go down hill when I heard more people were going to join. But now I have no doubt in my mind that it's going to be GREAT!
    Good job Ben for the awesome video!

    • @3blue1brown
      @3blue1brown  6 лет назад +165

      There is no doubt in my mind that the new additions will make the channel better.

    • @overpowered5919
      @overpowered5919 6 лет назад +11

      +3Blue1brown It already is! Awesome video as always. Can you make a video about the honeycomb conjecture?

    • @overpowered5919
      @overpowered5919 6 лет назад +7

      arxiv.org/abs/math/9906042 You can download the proof and I think the way you guys depict concepts is incredible so please consider it

    • @intuited9754
      @intuited9754 6 лет назад +18

      The only thing that would make this channel worse is if the current fans start gatekeeping. Very happy to see you explicitly subverting that!

    • @jayasri6764
      @jayasri6764 6 лет назад +1

      michael einhorn sadly,I believe sum of any other higher powers is impossible for a human to compute,since the extension would need higher dimensions than 3,which we are unable to properly imagine,on our own

  • @schizoframia4874
    @schizoframia4874 3 года назад +671

    Why are you red.

  • @임하늘-k3t
    @임하늘-k3t 5 лет назад +1705

    why these subjects are so interesting only when i'm preparing midterm exam

    • @sirhasslich536
      @sirhasslich536 5 лет назад +115

      Procrastination

    • @facitenonvictimarum
      @facitenonvictimarum 5 лет назад +7

      what term is at its mid point in May? just curious.

    • @facitenonvictimarum
      @facitenonvictimarum 5 лет назад

      @Tech Made Easy
      Thank you.

    • @jacquelineliu2641
      @jacquelineliu2641 5 лет назад +56

      Tech Made Easy
      No, because
      a) the Chinese Spring term goes from Feb to Jun
      b) the OP's name is Korean

    • @godson200
      @godson200 4 года назад +1

      Exactly man... Here i am 1 year later

  • @matanlevi5873
    @matanlevi5873 6 лет назад +81

    You say that wherever pi is showing up there's a circle hiding, one circle which I would die to find is the one hiding in the fact that the integral of e^-x^2 from minus infinity to plus infinity is the square root of pi.
    One of your best videos in my opinion by the way.

    • @monsterstein
      @monsterstein 6 лет назад +4

      integrate over two dimensions and take the square root at the end. since you integrated the square of what you should have...

    • @ilprediletto
      @ilprediletto 6 лет назад +7

      If you integrate exp(-x^2-y^2) in the Real plane, you can evaluate the integral via substitution polar coordinates, and dx dy=rho drho dtheta, then you integrate with theta from 0 to 2 pi, because 2 pi is the length of the circle with unit radius. Then here's to you pi!

    • @JoaoBapt
      @JoaoBapt 6 лет назад +11

      The usual proof is to think of this integral as the square root of the double integral exp(-x²-y²) over the plane. To evaluate this integral, switch to polar coordinates - here's your circle!

  • @balajisriram6363
    @balajisriram6363 6 лет назад +74

    whats stunning here is not just the geometry behind the problem, but the effort and intellect of the 3Blue1brown Team

  • @mushtaqrasool9169
    @mushtaqrasool9169 Год назад +18

    Professor gave us an insight of not only Mathematics but also Physics! Just shows how good of a teacher you are. Thanks for all of this.

    • @树成林
      @树成林 Год назад +1

      Excuse me, can we exchange math together, my friend?

  • @marwanaljohary7615
    @marwanaljohary7615 5 лет назад +130

    That was the most exciting math lesson I've ever been to.
    Thank you for making math so fun.

  • @MartinMatten
    @MartinMatten 4 года назад +237

    Well, this approach to the Basel problem is amazing! It combines physics, geometry, and maths in the same run! The inverse Pythagoras theorem is something new to me. Will check this out further. Thanks so much for this discovery on pi day!

  • @rs-tarxvfz
    @rs-tarxvfz 5 лет назад +954

    I want to nominate 3Blue1Brown the noble peace prize for year 2020. Thanks.

    • @АбдаллахМуслим
      @АбдаллахМуслим 5 лет назад +11

      because of his wife having cheated on him it can not be))))

    • @neeleshbansal3299
      @neeleshbansal3299 4 года назад +16

      but for mathematics FIELDS MEDAL

    • @FiXioNxd
      @FiXioNxd 4 года назад +9

      Абдаллах Муслим wow im ruski look Im making cringy jokes using bad English))))))) so funny right?))))

    • @Phobos_Anomaly
      @Phobos_Anomaly 4 года назад +10

      @@FiXioNxd Firstly, you don't know that that person is a Russian, secondly, what does that have to do with bad jokes?

    • @FiXioNxd
      @FiXioNxd 4 года назад +8

      Phobos Anomaly I think his intention was to make a joke, second, I guessed by his name hes Russian.

  • @martinelosudietz6795
    @martinelosudietz6795 3 года назад +13

    The explanation you made at minute 2:00, is absolutely beautiful and huuuuugely intuitive... You don't get infinite bright at the origin by adding up more lights... I absolutely loved it.

    • @Owen_loves_Butters
      @Owen_loves_Butters Год назад +1

      I wouldn't say hugely intuitive, since in 2D, the brightness does indeed go to infinity.

    • @catloverplayz3268
      @catloverplayz3268 Месяц назад

      ​@@Owen_loves_ButtersRight because the light can only go in two directions?

    • @Owen_loves_Butters
      @Owen_loves_Butters Месяц назад +1

      @@catloverplayz3268 The reason is that in 3D, light falls off at 1/r^2, but in 2D, it falls off at 1/r. In 3D, the sum of brightness of all the lighthouses is 1+1/2^2+1/3^2+1/4^2+1/5^2... which is what this video showed is pi^2/6. But in 2D, the sum is 1+1/2+1/3+1/4+1/5... which goes to infinity.

    • @catloverplayz3268
      @catloverplayz3268 Месяц назад

      @@Owen_loves_Butters thanks

  • @sophmcamp
    @sophmcamp 6 лет назад +211

    15:11 "The number line is kind of like a limit of ever-growing circles"
    MY MIND IS BLOWN

    • @gauravsingh3007
      @gauravsingh3007 5 лет назад +20

      My mind exploded so hard that my round skull became straight

    • @hpsmash77
      @hpsmash77 3 года назад

      @Federal Bureau of Investigation - FBI ...

    • @doctorbones711
      @doctorbones711 6 месяцев назад +1

      Believe it or not, this perspective becomes very concrete in what is called projective geometry - and it is just as useful there as it was in this proof! (Sorry for dropping in 6 years after your comment)

  • @MKWKezer
    @MKWKezer 6 лет назад +66

    That was simply fantastic. You really show what it's like to love math.
    Combining light and geometry to reveal the circle in 1 + 1/4 + 1/9 + ... = pi²/6? How great is that? You sir are amazing!

  • @johanwastlund8422
    @johanwastlund8422 6 лет назад +163

    This is wonderful! As I said in my paper, it's based on proofs by Yaglom & Yaglom, Hofbauer, and others, and I added some of my own ideas. I thought of the light sources as stars revolving around a common center of gravity, but light-houses are arguably easier to move around! :) I hope the "light-house proof" now becomes folklore, and I'm happy to have contributed to that!

    • @thetherorist9244
      @thetherorist9244 5 лет назад +2

      again just another distraction from the truth about pi and the information contained within its code and sequences...I find it strange that after the last decade and 9000 pages of text i have written on pi i haven't had ONE single person interested in it.....lets play a game folks...lets see who knows anything about pi that isn't common knowledge.....

    • @anushreesabnis5856
      @anushreesabnis5856 5 лет назад +6

      @Johan Wästlund you rock!!

    • @amineaboutalib
      @amineaboutalib 5 лет назад +3

      can you share ur paper? :)

    • @thetherorist9244
      @thetherorist9244 5 лет назад

      sure...let me just give you all my work@@amineaboutalib

    • @breadandbutter644
      @breadandbutter644 5 лет назад

      @@thetherorist9244 well i cant find it

  • @markborz7000
    @markborz7000 4 месяца назад +4

    As a physicist I love this solution. Very intuitive!
    Mathematics and Physics complememt each other in a wonderful way.
    The greatest mathematicians were also excellent physicist: Newton, Riemann, Poincare, Hilbert, Weyl etc....

  • @cesiupro123
    @cesiupro123 5 лет назад +467

    15:11 "the number line is kind of like a limit of ever growing circles" - i've been thinking of a number line like this since forever, i thought i was insane, but it makes sense now

    • @ibrahimmahmoud8592
      @ibrahimmahmoud8592 4 года назад +9

      DUDE SAME this video blew my mind with that statement

    • @isaakvandaalen3899
      @isaakvandaalen3899 4 года назад +50

      It gets worse. You can think of the complex plane as the surface of an infinitely large sphere. Lines on the surface of an infinitely large sphere wouldn't just approach being parallel, they would become parallel.
      Now if you plot the graph Y=1/X where X approaches 0, you might think it shows that as X nears 0, Y approaches infinity.
      Now I know a lot of people don't like it when you say that N/0=Infinity, but screw them. I do what I want.
      The real interesting thing here is if you take this exact same equation, Y=1/X, but after you plot it you run it through a Circle Inversion, you get to see what happens as the Y axis approaches infinity.
      Now I haven't actually done this, but it seems to me that the line Y=1/X would map right through the point of ''Infinity" and come out no worse for wear on the other side.
      Although this would be hard to see, as the plotted line would be hugging the Y axis pretty tight as it approaches that point.
      So to me this seems to pretty definitively answer the question that N/0=Infinity.
      Some people make the argument that this can't be true, because -N/0= minus Infinity. To which I say they are the same thing. The number line's an infinite circle, travel an infinite distance and you loop right back round again.
      Some people think that this can't be true, because if 1/0= Infinity, and 2/0= infinity, then does 1=2?
      To that I say no, 2/0 = 2*(1/0) = 2*Infinity, which is twice as big as the infinity we got before. It's different.
      This might not seem to make sense, but if you've ever heard the solution to the problem, How do you free up infinite rooms in an infinite hotel where every room is occupied?
      The answer is to move every guest to an odd numbered room, leaving an infinite number of rooms now unoccupied.
      Some infinities are bigger than others, this is not a contradiction.

    • @josephzeltsan1350
      @josephzeltsan1350 4 года назад +42

      This is not how you compare infinities. 1/0 is not infinity, because division by 0 is not allowed, and infinity is not a number. 2*infinity is not a "bigger" infinity. "Infinity" is in no way shape or form a real or complex number. What you can do is write that the limit of 1/x as x approaches "is infinity", which really means that as x approaches 0 1/x grows without bound. Analysis is good, treating infinity like a real number is unacceptable.

    • @andrewzhang8512
      @andrewzhang8512 4 года назад +2

      @@isaakvandaalen3899 Your fourth paragraph contradicts your statement.

    • @aculasabacca
      @aculasabacca 4 года назад +2

      @@isaakvandaalen3899 I've always felt like the infinity of space is a circle that comes around to a singularity. Not sure why I think this but psychedelic drugs may have played a part. :)

  • @kushkumar7389
    @kushkumar7389 4 года назад +32

    I have seen its proof by Fourier series but the way your team animated and gave physical proof is simply awesome... great work, cheers.

  • @CrannBethadh
    @CrannBethadh 5 лет назад +91

    I've been wondering how this equation related to Geometry for more than 20 years since I first saw it in college. THANK YOU!

    • @VinayAggarwal
      @VinayAggarwal 3 года назад +1

      This reminds me of Earth. It's spherical but still feels pretty flat, even though it's size is finite.

  • @gt6989b
    @gt6989b 3 года назад +53

    Unbelievably good :) I remember asking this same question in college, when I first saw this sum in a Fourier series class, and getting answers based on complex analysis :) This is so beautiful, thank you very much for posting this and providing fantastic insight.

  • @Copperbotte
    @Copperbotte 6 лет назад +239

    You can also use Gauss's law to approach the same solution, rather than a geometric approach. Gauss's law works since a radially symmetric field that's magnitude weakens via the inverse square law has its radius term fall out in a surface integral. This means no matter where the lighthouses are within a sphere of radius R, they can be represented by a single lighthouse of combined magnitude in its center. This also means that same combined lighthouse can be represented by equally spaced, equally lit lighthouses along its boundary. By using this law within a cylinder, and holding the "lighthouse surface density" to be 1/2, you find the surface integral to equal to π^2, and a quarter of the cylinder is π^2/4, the same result as using the geometric method.
    (The circle is quartered to eliminate lighthouses on the negative side of the number line, and double counting when the number line curves upwards to form the circle)

    • @3blue1brown
      @3blue1brown  6 лет назад +28

      Hmm, this seems super clever, but I'm not quite sure I follow the connection between the continuous "lighthouse surface density" and the discretized case.

    • @Copperbotte
      @Copperbotte 6 лет назад +7

      This surface integral works by taking the sum of the areas as the areas approach zero. However, if you hold this distance to be constant, the radius must increase to give the same result. Similar to zooming in to see individual differentials, which at that scale, would be discrete. Since I'm using a cylinder, and putting the lighthouses only on the circular boundary, the circular endcaps can be ignored.

    • @TheAgamemnon911
      @TheAgamemnon911 6 лет назад +1

      That is indeed very clever. But I don't think it is as elegant, because you need more advanced theorems for the proof.

    • @twilightknight123
      @twilightknight123 6 лет назад +2

      @Copperbotte, I'm not quite sure if I'm understanding what you're saying correctly, but I don't think Gauss' law works the way you think it does. If you have a random assortment of charges in a Gaussian surface, you can calculate the flux through the surface by assuming a lump of charge at the center, but this does NOT tell you anything about the field produced. I'm also not following your math or your explanations.

    • @anywallsocket
      @anywallsocket 6 лет назад +2

      Yeah no. Gauss's Law will tell you E and V for electrostatics. But there's no way you're gonna get a pi^2 term out of a cylindrical integral unless you make the length pi or something specific like that.

  • @ofermagen895
    @ofermagen895 6 лет назад +80

    An amazing proof. Perhaps the best proof I've seen in a while. I really like that even a high school student could follow along with it

    • @jeremydyar7566
      @jeremydyar7566 6 лет назад +8

      It makes you think that your understanding is finely tuned in until you pick up a pencil and paper and try some on your own

    • @jeremydyar7566
      @jeremydyar7566 5 лет назад

      @Ayush Dugar I'm literally catching up on my infinite series and sequences as we speak. I'll try this after I'm done

    • @fluent_styles6720
      @fluent_styles6720 5 лет назад

      Ofer Magen that's me!

    • @BoB-Dobbs_leaning-left
      @BoB-Dobbs_leaning-left 5 лет назад +1

      " I really like that even a high school student could follow along with it"
      If only we had a President that could do that.

    • @deanmarshall1011
      @deanmarshall1011 5 лет назад

      Steve Barnes hahaha so funny. Get a life.

  • @Selicre
    @Selicre 6 лет назад +19

    This was amazing! I love how geometry and algebra, while being based on completely different axioms, can represent the same concepts, and they way you switch between them is astounding.

  • @coltith7356
    @coltith7356 2 года назад +27

    I think this is the fourth proof I see of this, and this is certainly my top or second favourite.The other proofs I know involve Fourier series, the residue theorem for infinite sums or a Lebesgue integral. The first two weren't that easy to understand when I was studying them because I hadn't quite yet understood everything that we were using to prove this, and the Lebesgue integral was actually quite cool because even though the function used came out of nowhere, the theorems used were very explicit on what they do and then the basic integral we get didn't require much more understanding.
    But I learnt these 3 proofs in Uni, and they would have seemed like total garbage if I had seen them before, whereas this one is actually understandable for most people out there who are willing to listen carefully and pause the video to think about it from time to time.
    This is what makes this channel so great and useful. It offers new persepectives and gives everyone intuitive and clear explanations, that only require a little of motivation from the viewers.
    Most videos are almost self sufficient, you don't need to watch an entire series to understand the video that caught your attention, they give you a better understanding of where everything comes from but the explanations are clear enough that you can do without those additional previous videos.
    Truly amazing.

    • @ronald3836
      @ronald3836 8 месяцев назад +3

      I'd say the most intuitive one is the one by Euler.
      I discovered it myself as a student learning about the Taylor series of sin(x) and cos(x). From olympiad problem solving I knew that quantities such as the sum of the inverse roots of the zeros of a polynomial could be expressed in terms of the coefficients of the polynomial. Then I wondered what if I do this with sin(x)/x as an "infinite" polynomial. Lo and behold, out comes sum 1/n^2 = pi^2/6!
      I was aware that I could not formally justify these manipulations, but then I found out to my surprise that this was how Euler had "solved" it. If it's good enough for Euler... 🙂

  • @elliottsampson1454
    @elliottsampson1454 5 лет назад +281

    0:40 challenge posed in 1644 first 4 digits of awnser 1.644 coincidence I think not!

    • @tankizoltan1752
      @tankizoltan1752 5 лет назад +7

      Just wow.

    • @DivyanshMMMUT
      @DivyanshMMMUT 4 года назад +22

      Nice observation man

    • @Macion-sm2ui
      @Macion-sm2ui 4 года назад +43

      Next digit is 9 (for 90 years when problem was unsolved) and 34 (for 1734, year before Euler solve this problem). It can't be coincidence

    • @Potato2017
      @Potato2017 4 года назад +2

      1.644*9* so actually yeah

    • @no-body-nobody
      @no-body-nobody 4 года назад +4

      nice

  • @SludgeFuZZ
    @SludgeFuZZ 3 года назад +45

    That was absolutely beautiful. I must admit that I would not have questioned why pi is squared, but I can honestly say that I really enjoyed the answer.

  • @apratimghosh109
    @apratimghosh109 6 лет назад +428

    There are already so many mathematical results named after "Euler", that if they had called this "Euler's Problem" or something, it would start getting confusing...

    • @alephnull4044
      @alephnull4044 5 лет назад +32

      Proof: en.wikipedia.org/wiki/List_of_things_named_after_Leonhard_Euler
      QED

    • @SpaceyCortex
      @SpaceyCortex 5 лет назад +3

      This would be a problem yes.

    • @coningham7195
      @coningham7195 5 лет назад +21

      @@SpaceyCortex Would it be Euler's problem?

    • @alexwang982
      @alexwang982 5 лет назад +18

      The other Euler formula
      The other other Euler formula
      The other other other Euler formula

    • @김김-e2l
      @김김-e2l 5 лет назад +8

      Stop Eulering

  • @mescale
    @mescale 2 года назад +3

    If Sum(1/n^2)=π^2/6, then Sum(6/n^2)=π^2.
    6/n^2 is always rational for any n € N.
    If it's true that the sum of two rational number is still rational, then [6/(n-2)^2 + 6/(n-1)^2]+6/n^2 keeps still rational. This means that π^2 is rational.
    Thus: either π^2 is rational; either there exists some rational number whose sum is irrational; either Sum(1/n^2) approaches π^2/6, but it's not the same; either there's something missing.
    Waiting for any feedback.
    Thanks.

    • @steve112285
      @steve112285 2 года назад +1

      You are correct that every partial sum of this series is rational. However, the value of a series is the limit of the partial sums, and a limit of rational numbers is not, in general, rational. For every real number, there is some sequence of rational numbers which has that real number as its limit. But almost every real number is irrational, by cardinality arguments, so there are lots of sequences of rational numbers which approach irrational numbers.

  • @LaTortuePGM
    @LaTortuePGM 6 лет назад +666

    it's fascinating and frustrating at the same time to see how super-abstract concepts can be linked to some weird geometrical ones, like honestly wtf ?!

    • @n_x1891
      @n_x1891 6 лет назад +131

      The universe welcomes you; enjoy your stay.

    • @1996Pinocchio
      @1996Pinocchio 6 лет назад +1

      La Tortue PGM What do you think where these concepts are coming from?

    • @callofdutymuhammad
      @callofdutymuhammad 6 лет назад +8

      La Tortue PGM This problem isn't very abstract(for a physics student) it all depends on your understanding and where you're coming from.

    • @LaTortuePGM
      @LaTortuePGM 6 лет назад +4

      tbh i prefer abstract stuff, so i kinda struggle when it comes to more concrete, geometrical structures. still in high school though lol.

    • @protocol6
      @protocol6 6 лет назад +15

      Roverse You can check out anytime you like, but you can never leave.

  • @Contra1828
    @Contra1828 5 лет назад +99

    1:45 pi creature: OH MY GOD, you put me in front of an INFINITE line of lighthouses, I'm TWO DIMENSIONAL, light falls off as 1/x, the harmonic series diverges, YOU ASSHOLE I'M BLIND NOW

    • @pikcube
      @pikcube 3 года назад +3

      This comment is under appreciated

    • @satyapalsingh7849
      @satyapalsingh7849 3 года назад +2

      Really a nice one...need more attention

    • @granthamilton1918
      @granthamilton1918 3 года назад

      This comment gets the good comment award

    • @nickpro8116
      @nickpro8116 3 года назад

      Grant approximated the infinite series only with a finite number of lighthouses, so the pi creature is fine I guess

  • @marksvendensen3830
    @marksvendensen3830 6 лет назад +58

    This is the best math video I've ever seen! You and Mathologer have inspired me on a consistent basis for a while now, but this video is my favorite so far.

  • @ericbell1137
    @ericbell1137 2 года назад +9

    I' ve recently gained a passion for mathematics at the age of 27. Now that there's no pressure its lovely. Polynomials make me smile and I'm excited to be on this journey.

  • @harrystuart7455
    @harrystuart7455 6 лет назад +127

    Absolutely incredible, your videos never fail to blow my mind, keep up the good work!

  • @vari1535
    @vari1535 4 года назад +268

    Even with a straight line as "a circle", I still can't draw a perfect circle.

    • @rewrose2838
      @rewrose2838 4 года назад

      😂

    • @b.clarenc9517
      @b.clarenc9517 3 года назад +18

      Just pretend that you drew an accurate representation of the projection of a sphere in a higher-dimension curved manifold.

    • @trickytreyperfected1482
      @trickytreyperfected1482 3 года назад +14

      @@b.clarenc9517 I'm going to pretend I know what that means.

    • @Tactix_se
      @Tactix_se 3 года назад +2

      I mean if you think about it, it doesn’t really make sense because it would have to mean -infinity and +infinity lead into each other at the top of the circle

  • @TranSylvainie
    @TranSylvainie 6 лет назад +5

    Best math channel ever. Clever, original, beautiful, soothing / motivating voice... Just perfect. I've been following it since the very beginning. Every new release feels likes christmas. Please keep it on !

  • @supimon9146
    @supimon9146 7 месяцев назад +17

    the part from 13:54 to the end of video really did stretch my grey matter. Here it is for slow guys like me
    13:54 the fact that the lighthouses (factors) are aligned on a straight line on either side of the observer (origin) and are squared(so all negative factors are now positive), results in π²/4 = 2 (1/1² + 1/3² + 1/5² + ...)
    so 1/1² + 1/3² + 1/5² + ... = π²/8
    15:27 the thing we want to find out is what this series is equal to : 1/1² + 1/2² + 1/3² + ... = ?
    in order to find that out, we need to figure out how much share each of these parts
    1/1² + 1/3² + 1/5² + ... (lets call this O - for odds) and
    1/2² + 1/4² + 1/6² + ... (E - for even)
    have in
    1/1² + 1/2² + 1/3² + 1/4² + 1/5² + ... (lets call this full term as O+E)
    maybe 3/4 and 1/4 or 3/5 and 2/5 or whatever combination. we need to find it out.
    15:40 is where you pay close attention to what he says:
    "now you can think of that missing series as a scaled copy of the total series that we want"
    implying E = some scaled copy of O+E
    since this is inverse Pythagoras, the denominator part in all the factors for e.g. the 2 in 1/2² or the 3 in 1/3² is nothing but the distance from the observer.
    if you double all denominators in O+E then you will get E.
    1/(1x2)² + 1/(2x2)² + 1/(3x2)² + 1/(4x2)² + ... = 1/2² + 1/4² + 1/6² + ...
    proving E = some scaled copy of O+E
    so the earlier 1/2² = 1/4 become 1/(2x2)² = 1/16 . similarly 1/9 becomes 1/36 etc... so doubling the denominators, all factors in O+E become 1/4 of its original.
    therefore E has a share of 1/4 in O+E and therefore O must have a share of 3/4.
    or (3/4) of O+E = O
    But it is already known that O = π²/8
    (3/4)(O+E) = π²/8 or O+E = (4/3)(π²/8)
    or the complete term O+E = π²/6
    I must say that your idea of explaining the Basel problem using circles has indeed helped guy like me reason this answer perfectly - big thanks ! I have enjoyed all your videos - you are exceptionally brilliant

    • @joshuaharper372
      @joshuaharper372 5 месяцев назад +1

      Ah, that helps me understand where the 4/3rds came from. I think the video was just a little too quick or succinct in explaining that bit, but you have filled in the implied information.

    • @joshuaharper372
      @joshuaharper372 5 месяцев назад +1

      I just rewatched the last few minutes after reading this amplified explanation, and I finally actually understood and followed Grant's narration this time! Yay, finally!

    • @BramHeerebout
      @BramHeerebout 3 месяца назад

      That part looked really really counter intuitive to me (intuitive for me would be just to double it). So thank you very much for taking the time to explain it!

    • @cupckae1
      @cupckae1 2 месяца назад

      Appreciated can you explain where 1/d^2 came from?

  • @aj76257
    @aj76257 6 лет назад +7

    Two 3blue1brown videos in one week? It’s a dream come true!

  • @ilyrican
    @ilyrican 6 лет назад +54

    I just had an increasing heart rate excitement when I clicked on the new video notification!!

  • @dovi_bun
    @dovi_bun 5 лет назад +362

    12:57 that circular right angle kills me to this day

    • @patlerds
      @patlerds 5 лет назад +53

      Tech Made Easy the right angle symbol is drawn with a square, not a circular arc

    • @zke.ac6p2y58
      @zke.ac6p2y58 5 лет назад +12

      Maybe he just forgot the dot inside... ? ^.^

    • @napalmnathan9163
      @napalmnathan9163 5 лет назад +4

      my first clue into I'm not buying this.

    • @ishworshrestha3559
      @ishworshrestha3559 4 года назад

      Hh

    • @divasv
      @divasv 4 года назад +9

      90° is written there, square angle is used but it is not a rule neither it will affect in any way

  • @JayJay-qs8nd
    @JayJay-qs8nd 3 года назад +17

    At 16:40 you could state that since 1/4 of the TOTAL apparent brightness (B) is contributed by the sum of the inverse square of the even integers, then 3/4 of B comes from the sum of the inverse square of the odd integers, which has just been shown to = pi^2/8. Thus 3/4 of B = 3/4 x pi^2/8. So B = pi^2/6.

    • @marvin.marciano
      @marvin.marciano Год назад +2

      Thank you. Really helped to clear things out

    • @fchenhku
      @fchenhku 6 месяцев назад

      Excellent explanation! The video is brilliant but the explanation around this part is puzzling to me. How I convinced myself of the final answer was via this: pi^2 / 8 * (1+1/4 + 1/4^2 + 1/4^3 +...)=pi^2 / 8 * 1/(1- 1/4) = pi^2 / 6.

  • @boeingaviator9503
    @boeingaviator9503 6 лет назад +800

    2 videos 1 week is this christmas all over again ?

    • @ManojP847
      @ManojP847 6 лет назад +8

      It's Holi, my dear friend! Happy Holi! Happy Mathleting!

    • @PrimusProductions
      @PrimusProductions 6 лет назад +1

      Is that what it's snowing?

    • @plaguedoct0r
      @plaguedoct0r 6 лет назад

      Yes christmas is all over. Christmas is being in december time.

    • @BarryLeeahtam
      @BarryLeeahtam 6 лет назад

      You are the best and you could not be happy

    • @chinisa.innukshopa
      @chinisa.innukshopa 6 лет назад

      We can't wait another day-please, Solstice, don't be late.... [Apologies to R Bagdasarian]

  • @midodoku
    @midodoku 6 лет назад +46

    SO impressed from physical anaysis of basel problem. Nice Work!

  • @aenygma
    @aenygma 6 лет назад +7

    wow.
    I have no idea why you do these exegeses, but i'm eternally grateful for it.
    such eloquent and elegant explanations tap into a deep sense of beauty.
    Thanks Grant

  • @KIMARO1423
    @KIMARO1423 3 года назад +10

    평소에도 수학을 좋아하는데 이렇게 재미있게 설명해 주시고 한글 자막까지 달아주셔서 감사해요.

  • @andreamarino95
    @andreamarino95 4 года назад +12

    I have been doing math for a few years, and I still think that this is one of the clever stuff I have seen in a while. Feels great.

  • @androane
    @androane 5 лет назад +529

    All I know at the end of this video is that lighthouses emit light.

    • @pasunurusaivineeth3739
      @pasunurusaivineeth3739 5 лет назад +5

      And they are so bright that the youtube illustration is just enough to irritate your eyes ;)

    • @shreerangvaidya9264
      @shreerangvaidya9264 4 года назад +12

      Thanks for the hint, now I know what the video is about ;-)

    • @glowingfish
      @glowingfish 4 года назад +4

      I bet there are lots of nice videos of lighthouses on youtube, and that is what I think I am going to go see.

    • @DumToasty
      @DumToasty 4 года назад +5

      And light has frequency waves which means you now can study more! (:

    • @yogeshdewangan7746
      @yogeshdewangan7746 4 года назад

      😄

  • @YatriTrivedi
    @YatriTrivedi 6 лет назад +19

    Your videos are in my top 5 most-looked-forward-to. I'm really happy you were able to increase your team! I think it's about time I join your patreon campaign.

    • @bibop224
      @bibop224 6 лет назад +5

      what else do you have in your top 5 then ? Just curious

    • @YatriTrivedi
      @YatriTrivedi 6 лет назад +3

      bibop224
      top 4: Welch labs, mathologer, standupmaths, and Mark brown.
      Here's a few extra: artifexian, nativlang, alliterative(the endless knot), PBS spacetime, PBS infinity series, scishow, nerdwriter1, every frame a painting, holy fucking science, I like to make stuff, and Chris salomone

    • @bibop224
      @bibop224 6 лет назад +2

      cool, thanks for sharing !

    • @TheTobyrobot
      @TheTobyrobot 6 лет назад +2

      Yatri Trivedi
      wintergatan is great aswell. Not so much science, but more engineering and music!

    • @YatriTrivedi
      @YatriTrivedi 6 лет назад

      bibop224 anytime! Definitely check them out!

  • @moumnyxt3337
    @moumnyxt3337 Год назад +2

    Excellent presentation of a very beautiful proof. A minor complaint: the proof is incomplete, as, in the final step, it is assumed that only the points (lighthouses) close to the x-axis contribute. At every step of the doubling-the-circle process, there are points, eg, directly above the observer, far in the y direction - these never disappear. To complete the proof, it must be shown that, in the large radius limit, the contribution of those points tends to zero - it shouldn't be difficult but, as is, the proof is incomplete.

  • @vatsaltrivedi2755
    @vatsaltrivedi2755 6 лет назад +15

    Watching your video for the first time and feeling myself so unfortunate that I didn't watch it until now..... Awesome work... I'm gonna recommend it to all my friends...

  • @surbhibhanot8635
    @surbhibhanot8635 5 лет назад +5

    Sir, your concepts are so crystal clear...please don't stop making these types of videos.

  • @Someone-cr8cj
    @Someone-cr8cj 6 лет назад +353

    "Alright, buckle up"

    • @SomeoneCommenting
      @SomeoneCommenting 6 лет назад +2

      Good thing he didn't say "Buckle up, Buckaroos!"

  • @TheDigiWorld
    @TheDigiWorld Год назад +5

    I wasn't necessarily able to understand the proof but still i appreciate how a crazy-looking, complicated infinite product can be explained using not just brute-force math but a combination of math and intuition

  • @HHH21
    @HHH21 4 года назад +7

    Till now I was just learning principles, theroms, formulas given in my book without proof I was really got angry to learn without proof but after seeing your videos I got ideas that how the these are derived and how it actually works. Now I am feeling better now.

  • @zairaner1489
    @zairaner1489 6 лет назад +17

    I feel like there was one point which was glossed over. The entire infinite circle does not correspond to the numberline in this case (topologists agree with me) and its pretty obvious why: The lighthouses on the upper hemispheres of the ever growing circle are not corresponding to points on the nubmerline, instead their distance to the number line becomes greater and greater the more the circle grows!! Of course, this does not change the outcome because their contribution can be ignored in the limit (because again their distance to the numberline and thus to the observer becomes arbitrarily large), it's just the circle (without valuing accordin to the inverse distance to the origin) does not correpsond t the numberline!

    • @zairaner1489
      @zairaner1489 6 лет назад +2

      Just read the description and he wrote the exact same thing there. Welp

    • @ii795
      @ii795 6 лет назад

      That claim alarmed me too. I realized straightaway, that this was omitted for clarity, but I can see how this is not an easy and obvious thing to prove. Brushing off little and seemingly insignificant things like that is so un-mathematical. He should have said at least something like "with a caveat, see description". I bet he was just too carried away with his nice geometrical explanation and didn't notice this omission in his reasoning.

    • @ii795
      @ii795 6 лет назад

      I was also slightly puzzled by a claim at 7:55 which was totally unexpected, until at 8:28 he says "Why, you might ask". Exactly, why? A little bit of forewarning would really help.

  • @DennisKovacich
    @DennisKovacich 3 месяца назад +1

    I can’t go through 4.4K comments to see if someone already mentioned this, so please forgive me if this is a repeat. At 5:43, when you’re putting two lighthouses at the ends of the perpendicular, you say, “which I’ll go ahead and call lighthouse A over here on the left.” The observer at the origin is on the left, and A is on the right.

    • @marianl8718
      @marianl8718 2 месяца назад +1

      You are right, it is a mistake.

  • @alvarojimenez1252
    @alvarojimenez1252 4 года назад +13

    Amazing! The first thing I thought of when I saw the animations was that it kind of looked like De Moivre's formula with lightbulbs and now I wonder whether there is a hidden proof in the video. Tremendous work!

  • @saikiran2310
    @saikiran2310 6 лет назад +603

    2 videos in a week!

    • @zokalyx
      @zokalyx 6 лет назад +4

      this is making me so happy

    • @gregoryfenn1462
      @gregoryfenn1462 6 лет назад +2

      You have 314 likes for this comment. NO ONE MUST SPOIL THIS.

    • @milanstevic8424
      @milanstevic8424 6 лет назад

      if and only if...

  • @MG30001
    @MG30001 6 лет назад +349

    Mind blown. Multiple times. And I'm only half way through it.

    • @echonnet
      @echonnet 6 лет назад +2

      Wish you had it now

    • @RazorM97
      @RazorM97 5 лет назад +2

      we should have expected this, if you look at the earth from any of the points like now, it is straight, if you look from above is huge and round at many points because is a sphere not really but oval like, you can have a sphere if you cut some parts correctly, our eyes narrow it. if you look through a microscope and so on, the width of a single hair wire is like a million atoms or probably more
      source:
      ruclips.net/video/IFKnq9QM6_A/видео.html

    • @RazorM97
      @RazorM97 5 лет назад

      just think how we are bending over along with the surface of the earth, seen from space our heads shoulders and so do not surpass the circular size and shape of the earth in fact they are the same and fitting with any part of it

    • @kummer45
      @kummer45 5 лет назад

      The guy got creative using the superposition principle. Using light? He's dealing with "waves". That man studied mathematics, physics and of course, computer science. Expect combined ideas of this sort in all of his videos.

  • @robperkins6023
    @robperkins6023 3 года назад +1

    I've lived in Basel. Grant, you make transcendent videos about math and you say the word "Basel" very differently than I learned. It kept my attention. :-D

  • @akshat9282
    @akshat9282 6 лет назад +11

    The animations were so amazing. Happy to see that you can get contributors. We get more videos. Win win for all

  • @JorgetePanete
    @JorgetePanete 6 лет назад +6

    i love how every video that every youtuber (in maths and that) helps other youtubers too

  • @pinkraven4402
    @pinkraven4402 6 лет назад +13

    This is one of the best RUclips videos I've ever seen so far and I've seen much

  • @builder1013
    @builder1013 Год назад +4

    Wait, so pi is just the square root of 6 over each of the squares all summed together?? Oh my goodness my mind is blown.

  • @johnchessant3012
    @johnchessant3012 6 лет назад +839

    Badaboom Badabing!!

  • @sabinrawr
    @sabinrawr 6 лет назад +54

    Hey 3b1b: Don't ever change. Ever. Except when you do, because that's another kind of amazing. Love you / you guys!

  • @ninnusridhar
    @ninnusridhar 5 лет назад +58

    "What is pi doing here?" Can be said to be the greatest question is math!

  • @bobfels5343
    @bobfels5343 3 года назад +4

    at 17:00 the notation is a bit strange, had to watch it twice to get what you mean with the arrow. Nice proof though :)

  • @CanoTheVolcano
    @CanoTheVolcano 6 лет назад +4

    When you were doing the brilliant.org plug at the end of the video, I just want to say thank you for saying that getting stumped is a part of learning. Especially as this schoolyear ends, things are getting ever stressful, and I always would feel super guilty when I asked my friends for help on an assignment. School taught me that if you got stumped on a problem, then you were a failure.

  • @hal6yon
    @hal6yon 6 лет назад +172

    My kids have no idea why I'm applauding my phone at 1:15am.

    • @fossilfighters101
      @fossilfighters101 6 лет назад +1

      +

    • @MmeHyraelle
      @MmeHyraelle 6 лет назад +3

      Now, applaud them when they learn this. Because ow, my brain. It hurts!

    • @u.v.s.5583
      @u.v.s.5583 6 лет назад

      Deserved applause. One of the coolest things I've ever seen.

    • @brotherstech3901
      @brotherstech3901 6 лет назад

      i wish i were good enough in mathematics to understand this mind blowing proof.

  • @achatterjee6258
    @achatterjee6258 3 года назад +16

    Did someone mention that this is also the solution to the [Riemann] zeta function when s=2 ?

  • @MrBanzoid
    @MrBanzoid 3 года назад +6

    I use Pi all the time while calculating frequencies of inductor/capacitor networks, phase shift in transmission lines and lots of other stuff when designing radio frequency circuits. They're all connected to sine waves, which are just funky circles.

  • @Redkillahh
    @Redkillahh 5 лет назад +11

    I just submitted my final year paper on the Basel Problem, I kinda wish I'd seen this video a few weeks ago!

  • @fenghan4766
    @fenghan4766 5 лет назад +36

    Amazing, this is how math works with physics. The video, of course, fantastic!!!

  • @Meic909
    @Meic909 Год назад

    I was lucky enough to have a great mathematics and geometry teacher. Many questions in algebra are most fruitfully investigated when they are given a geometric interpretation.

  • @SwistakMiecio
    @SwistakMiecio 4 года назад +9

    Wow, this is the first math RUclips video that actually blew my mind (and it's not easy to get my mind blown). Great video!
    It reminded me of beautiful proof of Pick's formula involving putting melting cube of ice in every lattice point (water originating from it is modelled as growing disk centered at this point), arguing that influx and outflux of water through polygon's perimeter cancels out and comparing water within the polygon on the beginning (what Pick's formula tells you) and in the infinity (which is its area).

  • @jakeroosenbloom
    @jakeroosenbloom 6 лет назад +62

    Completely loving this!

  • @project_nihilist
    @project_nihilist 4 года назад +7

    I’ve always loved math. Especially math I can picture practical uses in my head.
    I’ve seen construction workers spend an hour squaring up a foundation because they didn’t know a2+b2=c2.
    They literally put two stakes in the ground measure out two other stakes. And then shift two stakes back and forth until both diagonals are equal.
    I’ve actually seen additions to homes built that are out of square because the original structure wasn’t square.
    You might look at the flooring or the siding and those two inches off square really show up during the finish, while it would be easier to cheat those couple inches where the old meets the new then to extend the problem out another 20-60 feet and then have to try and make up for the problem.
    This video did make me feel like I was learning some music theory I didn’t understand and really have no reason to understand. I have lots of questions about the infinite circle.
    I’ve been out of college for 20 years, but an infinite circle on an x axis would have two overlapping lines on the x axis? It is still still a circle and considering all that inverse stuff 1/2 of it would be ignored and canceled out maybe?
    I have heard flat earthers try to use this law to prove the earth is flat and I’m wondering if they ever heard of this infinite circle and tried to apply it to the earth it’s no wonder they sound like retards. 😂 jk they couldn’t even fathom the idea.
    This stuff is mind blowing. I am an electrician and do try to explain how to utilize light. In most bathrooms I wire the vanity light is the primary light in the bathroom and the light in the vent/heater is secondary.
    I use this inverse law often when laying out lighting and electric baseboard heaters.

    • @thekinginyellow1744
      @thekinginyellow1744 2 года назад

      I'm guessing their boss wasn't around. Normally in construction you square by extending lines from 3,4,5 right triangles. Remember people were doing this before the invention of electronic calculators.

  • @seannee3896
    @seannee3896 3 года назад +4

    Fantastic stuff! I am relearning applied mathematics from this excellent approach. This is much more in keeping with the way Archimededes and Newton thought about mathematical thinking in science. Feynman would love all this, I think.

  • @atouloupas
    @atouloupas 4 года назад +24

    16:45 I don't get why we multiply all the integers by 3/4 to get to the odd integers although I get it for the even ones. Could anyone explain it in more detail since I got a bit lost in the video?

    • @Felipe-sw8wp
      @Felipe-sw8wp 2 года назад +14

      I got lost too. If S is the sum of the reciprocals of all square numbers, then it's immediate that S/4 is the sum of the reciprocals of even squares.
      To obtain the sum of reciprocals of odd squares, you simply wipe off the even squares, S - S/4 = 3/4*S.
      He even says in the video "evens plus odds have to give us the whole thing" meaning 1/4 + 3/4 = 1. He did a subtraction too and not a direct scaling as you and I were led into thinking.

    • @Owen_loves_Butters
      @Owen_loves_Butters Год назад

      Because... 1-1/4=3/4?

    • @okinseymcron5798
      @okinseymcron5798 Год назад +1

      ​​​@@Felipe-sw8wp
      Sum over even integers = Sum over all integers * 1/4 .
      So The 3 remaining quarters of Sum over all integers is Sum over odd integers.
      In other words, to get from Sum over all integers to Sum over odd integers, you must multiply Sum over all integers by 3/4.
      This means that in the other way around, to get from Sum over odd integers to Sum over all integers, you must divide Sum over odd integers by 3/4, i.e multiply by 4/3.
      The scaling stuff was only to get the 1/4 factor (I recommend you look carefully at the animation), then leading to the 3/4 factor thus allowing to make the link between Sum over all integers and the 2 partial sums.

  • @isobar5857
    @isobar5857 5 лет назад +9

    You sir are a wizard. Such beautiful animation and insight. Thanks for this, much appreciated.

  • @marshallpeterson1653
    @marshallpeterson1653 Год назад +1

    this is also used in astronany, Appaert Magnatude, to calulate distance from the observer to to the object being observered, by taking the appaernt magnatude of a type 1a supernova and using the angel of parralacx between the type 1a and the object being observe. Use that angle, plug that into the formula for angles do some path and if the distance to type 1a is correct you get the sindance from you to object you are observing. Appaerent Magnitiude is a beautiful tool.

  • @yesid17
    @yesid17 6 лет назад +7

    your mastery of animation never ceases to amaze me
    keep up the good work, and thank you for your fantastic videos!!

  • @iamkhaledosman
    @iamkhaledosman 6 лет назад +156

    MAAAN DAMMNNN YOU BACK AGAIN!

    • @JorgetePanete
      @JorgetePanete 6 лет назад +1

      KHALED_ALPHA - Critical Ops you're*

    • @ZinfinityX
      @ZinfinityX 6 лет назад +3

      Jorge C. M. If you're going to correct him, do so for the whole sentence.

    • @iamkhaledosman
      @iamkhaledosman 6 лет назад +2

      bro, that's my accent, is there any problem?

    • @_s__d_1128
      @_s__d_1128 6 лет назад +1

      Analog Signal your*

    • @_s__d_1128
      @_s__d_1128 6 лет назад +4

      William Lambert It's*

  • @jukkapalomaki4613
    @jukkapalomaki4613 4 года назад +4

    It's almost two years from the this great video and I'm still digging the lake.

  • @vaibhavgupta627
    @vaibhavgupta627 Год назад +1

    The way you explained this is just awesome. This will remain in my brain forever.

  • @wisdom6458
    @wisdom6458 4 года назад +43

    That's the Magic of Mathematics. A non-sense idea of LightHouses solving a weird problem like that.

  • @TheAgamemnon911
    @TheAgamemnon911 6 лет назад +19

    In the second iteration you are only 1 lighthouse short of summoning a demon. :P

  • @jaym6996
    @jaym6996 6 лет назад +37

    *takes one look at tumbnail*
    Riemann Zeta, my old nemesis, we meet again!