How to find the Residues of a Complex Function

Поделиться
HTML-код
  • Опубликовано: 18 ноя 2024

Комментарии • 151

  • @mahnoorpirzada6638
    @mahnoorpirzada6638 4 года назад +232

    i find it incredible that i pay a lot of money to attend a top ranked uni and be taught this, but end up learning all of it for free on youtube. this is amazing, thank you.

    • @covingtonkua9404
      @covingtonkua9404 4 года назад +8

      can't relate more

    • @FighterAceee94
      @FighterAceee94 4 года назад +7

      And here I thought the reason I wasn't taught this at uni was because my uni is free (paid by taxpayers)

    • @mettataurr
      @mettataurr 4 года назад +1

      More teachers need to learn from this neon-focused study

    • @SouravBagchigoogleplus
      @SouravBagchigoogleplus 3 года назад +4

      I also attend a top ranked University. That's why our professor assumed that we learnt these simple things in high school.

    • @technoguyx
      @technoguyx 3 года назад +3

      You don't pay to learn -- you're expected to learn yourself. The point of university is to meet people and find opportunities. And it should be free for anyone capable of entering it.

  • @tariqandrea398
    @tariqandrea398 Год назад +11

    This is not just a lecture on complex variables and residues. This is a service to the human race. Years back when I took complex variables at Stanford, it was near impossible to understand Cauchy's theorem, residues, and their uses. It took me an extremely long time to understand what this lecture communicated in 15 minutes. Current students from the University fo Toronto, which prides itself as one of the worlds top 20 post some horror stories about their freshmen courses in calculus, physics and YES even pedestrian chemistry and biology.

  • @ultrio325
    @ultrio325 2 месяца назад +1

    First time in my life I _relied_ on a Khan lecture, while most lectures on RUclips give overviews on topics and expect one's institution to have the details of execution, you are the yin to the math youtube's yang. Absolute bravo sir.

  • @rikudou766
    @rikudou766 5 месяцев назад +1

    Thank you Dr. Khan. My proffessor finished up complex analysis within 1.5 month and we tought it was impressive. But with you I understood the course within a night. Please continue teaching us because you are better than any proffessor I know.

  • @rachanasoni007
    @rachanasoni007 6 лет назад +60

    Oh my god. This is great. Why I haven't discovered you earlier 👍I just loved your presentation style speaking style. You have earned a fan 🙏

  • @coolbowties394
    @coolbowties394 4 года назад +7

    Thank you SO much. I have an exam on complex function theory in a few days and my mind had gone totally blank! Amazing, clear, thorough presentation. Thanks for saving my degree!

  • @charlierandallmoll1531
    @charlierandallmoll1531 6 месяцев назад

    After hours of confusion with my terrible textbook (fischer), you have cleared everything up for me in less than 15 mins, thank you

  • @azmath2059
    @azmath2059 7 лет назад +17

    Brilliant, thank you for posting. It's like being in a dark room and having the light switched on.

  • @athul3870
    @athul3870 3 года назад

    You, my sir, are what would generally be known as a LEGEND.

  • @sandracordoba6090
    @sandracordoba6090 Год назад +3

    Hope you are getting the recognition you deserve. Great material. Thank you very much for your effort.

  • @alvinpan7004
    @alvinpan7004 4 года назад +2

    WOW, I'm so astonished by the fact that the contents and explanations are laconic, comprehensive and engaging, excellent in all aspects! Thank you so much for this marvellous course!

  • @tpthpt5973
    @tpthpt5973 7 лет назад +21

    I would like to see an example of the residue theorem where a pole lies on a boundary (not inside, not outside).
    Great videos by the way!

    • @FacultyofKhan
      @FacultyofKhan  7 лет назад +10

      Interesting, I can try that in a future video for sure, and thank you for the kind words!

    • @speeshers
      @speeshers 2 года назад +3

      4 years late, but I got a solution for you!
      Suppose a pole z0 lies on the real axis while you consider a contour in the upper half-plane. Then, you approximate z0 as z0+ i*p, in the limit as p approaches 0. That is, z0 = lim (p --> 0) [ z0 + i*p]. The addition of i*p removes the pole from the boundary and pushes it into the upper half plane. You can equivalently let z0 go to z0 - i*p to push it into the lower half plane.
      So replace every instance of z0 with z0 +/- i*p, simplify, and take the limit at the end. This way, you can tackle poles on boundaries of contours.

  • @nestorv7627
    @nestorv7627 7 лет назад +37

    these videos are sooo beautiful and entertaining

  • @maithaap4565
    @maithaap4565 4 года назад

    Wow! I have watched this video before. At first, I haven't understood it, but then I watched the whole series (with skipping the proofs) and it is very clear. Thank you sir, your explanation is to the point, and very clear!

  • @ryanmckenna2047
    @ryanmckenna2047 3 года назад

    The massive dusty tome I was reading on this has been hard going but your lectures made it easy and enjoyable to understand

  • @bhoopendragupta4782
    @bhoopendragupta4782 3 года назад

    I was looking for this video all over the internet, nice explanation👍👍👍

  • @ayasaki.pb_787
    @ayasaki.pb_787 3 года назад

    Much thanks for proving technic 3. My book does the same by saying it's easy to identify that without show me the proof. Now have the complete picture of computing residues.

  • @captain_jack8640
    @captain_jack8640 5 лет назад +1

    Just to inform you sir
    You are doing a great work for learners like us.
    Thank you

  • @StanDoesaThing
    @StanDoesaThing 4 года назад

    This video is exactly what I was telling my friend I wanted from my professor but wasn't getting. Thanks!

  • @sayy_gaarr
    @sayy_gaarr 5 лет назад +2

    This video perfectly shows why I love math !! Greatly appreciated. Keep it up.

  • @alexrosellverges8345
    @alexrosellverges8345 5 лет назад +1

    This series is pretty cool. Concise, formal and clear, thanks!!

  • @frechernono6401
    @frechernono6401 4 года назад +1

    Thank you really much. The explanation is so well done and easy to understand. Looking forward to learn more from your videos!

  • @tompurcell1499
    @tompurcell1499 5 лет назад +1

    I might be missing something here, and technically you are correct, but surely for a function f(z) having a pole of order n, it is unnecessary to multiply the Laurent Series for f about the pole α by (z - α) to any exponent greater than n. Indeed (as demonstrated in your last example) for such a function f, with Res(f, α) the residue of f,
    Res(f, α) = (1/(n-1)!) lim(z → α) d^(n-1)/dz^(n-1) [(z - α)^n f(z)]
    For m > n, all that we achieve is more work in determining the residue, as fun as repeated differentiating may be.

  • @rayus77
    @rayus77 7 лет назад +3

    Thanks so much Khan. You just saved me hours trying to revise Complex Calculus. Your videos are so concise and easy to understanding. Keep these videos coming :D !

  • @Frostbitecgi
    @Frostbitecgi 5 лет назад +2

    i loved this lecture .... all clear to me now .. thank you soooo much

  • @mohamedmouh3949
    @mohamedmouh3949 Год назад +1

    i like the speed of explaining

  • @LowMoneyStudy
    @LowMoneyStudy 6 лет назад +3

    Absolutely Clean And Amazing Explanation, Thank you

  • @박종일-u4q
    @박종일-u4q 4 года назад

    give thanks to you from korea teacher
    you made me keep dreaming

  • @kanikagupta6103
    @kanikagupta6103 6 лет назад +2

    Concepts so beautifully explained

  • @lidkaluczkiewicz420
    @lidkaluczkiewicz420 Год назад +1

    Thanks a lot! I will pass my finals hopefully.

  • @OmarAhmed-ic4fw
    @OmarAhmed-ic4fw 3 года назад

    Great work! I wish you would continue with complex analysis making more videos about the theory and examples.

  • @tedk2152
    @tedk2152 5 лет назад +2

    You are an angel.

  • @xerxes4849
    @xerxes4849 3 года назад

    Thx for this explanation. Made a lot of things clear for me!

  • @sanamazarniya8092
    @sanamazarniya8092 5 лет назад +1

    just wanted to say that you're amazing and thank you :)

  • @Zumerjud
    @Zumerjud 2 года назад

    Very clear explanation. Thank you!

  • @mihaipuiu6231
    @mihaipuiu6231 3 года назад

    Very nice demonstration.

  • @notcavendish9754
    @notcavendish9754 7 лет назад +1

    Thank you so much for your great vidios! Sometimes they are life saving.

    • @FacultyofKhan
      @FacultyofKhan  7 лет назад

      No problem! I appreciate the kind words!

  • @ziqizhang1925
    @ziqizhang1925 6 лет назад +1

    Thank you so much for this high quality video!!

  • @carlosfelipebedoyariveros4776
    @carlosfelipebedoyariveros4776 5 лет назад

    What a beatiful lecture!

  • @fabiospinelli4179
    @fabiospinelli4179 Год назад

    this i steh first math video i needed to put at 0.75 because you are god dam fast, BTW: nice explanation

  • @mariomasters1
    @mariomasters1 5 лет назад

    Excellent lecture series man!

  • @GoldenPlana
    @GoldenPlana 7 лет назад

    Your videos are extremely helpful! Thanks!

  • @ryanchatterjee
    @ryanchatterjee 7 лет назад

    Another important technique: If you have a function of the form f(z)=p(z)/q(z), where q(z) has a zero at z=a but its first derivative is nonzero at z=a, and p(a) is nonzero, the residue at z=a will be equal to p(a)/q'(a).

  • @ChocolateMilkCultLeader
    @ChocolateMilkCultLeader 4 года назад +1

    Exam in 2 days. Thank you for this

  • @BIGPIMPINREELS
    @BIGPIMPINREELS 4 года назад

    Really good work! Thank you so much for this

  • @frankreashore
    @frankreashore 3 года назад

    Wonderfully clear description. Huge thanks. What drawing tool are you using?

  • @carnival121
    @carnival121 6 лет назад +1

    I think I'm being very dim but I don't get the first example. The taylor series of the sin(z) is the analytic part right? I dont get how dividing through by 1/z^2 makes it the principal part. I'm clearly not getting how to construct the Laurent series. Does anyone know of any pages that go through step by step how to get the laurent series without the taylor series shortcut?

  • @HaNguyen-zw3xz
    @HaNguyen-zw3xz 6 лет назад +1

    Thankyou so much for posting this video!!!!

  • @ascle9095
    @ascle9095 Год назад

    Thank you so much, life saver

  • @audwindcosta8500
    @audwindcosta8500 6 лет назад +1

    Awesome Lecture Thank you so much sir

  • @samuelj5890
    @samuelj5890 5 лет назад +1

    ayyyyy you the G my man

  • @pushpamsingh3870
    @pushpamsingh3870 6 лет назад +1

    It is very helpful. Thanks a lot for it.

  • @WA-hq6ls
    @WA-hq6ls 5 лет назад

    allow me, but this is fu*king nice!!

  • @kaishaikh6241
    @kaishaikh6241 7 лет назад +2

    Does the next video on complex variables exist yet? If not, please consider this a request :) great video by the way!

    • @FacultyofKhan
      @FacultyofKhan  7 лет назад +2

      Doesn't exist yet, but I'm making one. Thank you for the kind words!

  • @arturo3511
    @arturo3511 Год назад

    at 4.02, could you explain why it stops at j=1 for a simple pole ?

  • @metallicafan97ariana
    @metallicafan97ariana 3 года назад

    AMAZING. many thanks

  • @matthewscott336
    @matthewscott336 Год назад

    Really great content

  • @boyteam10
    @boyteam10 5 лет назад

    Very good lesson

  • @jack000pumpkin
    @jack000pumpkin 7 лет назад +1

    Great channel. Thank you so much!

  • @Jheng-YiLin
    @Jheng-YiLin 2 года назад

    GOAT!!!

  • @mogustew
    @mogustew 3 года назад

    Why is it that in the third technique we do not have to the take the limit as z -> z_0 as we did when z_0 was a simple pole?

  • @whoisnp3305
    @whoisnp3305 5 месяцев назад +1

    How do you know if something has a pole ?. Is there a video that you have on this concept ?

    • @FacultyofKhan
      @FacultyofKhan  5 месяцев назад

      I define poles here (I'd suggest watching the videos before this one on the playlist so you have a stronger idea of what's happening): ruclips.net/video/0ZOMkmy-aTo/видео.html

  • @monikamishra8591
    @monikamishra8591 6 лет назад +1

    Wow...your video was very helpful...but can you tell me the tool of making this video? I mean can you tell me the software you are using for making this video?

  • @uimasterskill
    @uimasterskill 2 года назад

    Your proof works if the set of singularities is discrete topologically, because only then you can draw small disjoint circles around them. Are they always like this? Can the set of singularities have an accumulation point, for example?

  • @ddiq47
    @ddiq47 2 года назад

    ur a legend

  • @ArathonSG
    @ArathonSG 4 года назад

    Great video thank you so much

  • @Mryeo5354
    @Mryeo5354 4 месяца назад

    great presenter =D

  • @sajidrizvi4665
    @sajidrizvi4665 7 лет назад +1

    Thank you so very much for this :)

  • @cboniefbr
    @cboniefbr 7 лет назад +1

    Amazing videos!!

  • @GoogleUser-ee8ro
    @GoogleUser-ee8ro Год назад

    5:27 why is z = i is the only simple pole? how about z=-i, z=1 and z=-1? cosz for those zeros are also analytic and they all appear once in the denominator.

  • @ItsKickey
    @ItsKickey 2 года назад

    "The proof is very simple and left it as an exercises"
    LOL
    I am preparing the midterm and all my roommate are looking at me like I am a fool

  • @Ella20399
    @Ella20399 5 лет назад

    Cant thank you enough

  • @pushpamsingh3870
    @pushpamsingh3870 6 лет назад +1

    Please make a video on branch point, too.

  • @arbimalngiang7349
    @arbimalngiang7349 5 лет назад

    I like the lecture it is very

  • @dikshantdulal587
    @dikshantdulal587 3 года назад

    Love it!

  • @RavindraKempaiah
    @RavindraKempaiah 7 лет назад +1

    You're the best. I wish you could offer a Coursera or EdX course.
    Are you a faculty at a University?

    • @FacultyofKhan
      @FacultyofKhan  7 лет назад

      Nope, not a faculty. I'm a university student.

    • @marcelasiqueira6658
      @marcelasiqueira6658 5 лет назад

      Most professors at universities do NOT teach so good.

  • @rjbeatz
    @rjbeatz 4 года назад

    Hello!
    Can you recommend any books related to this topic?
    Thank You

  • @CarlosRamos-tx4er
    @CarlosRamos-tx4er 4 года назад

    well , if lim (z-z_0)f(z) when z tends to z_0 tends to infinity , z_0 also could be a essential singularity but if there is a finite n such the lim((z-z_0)^n)f(z) is finite, then z_0 is nesesarily a pole

  • @NicolasSchmidMusic
    @NicolasSchmidMusic 3 года назад

    I don't really see why for a pole of order n we can't just multiply with (z -zo)^n. Souldn't it also give us the residue at zo? Obviously what I say is wrong because it doesn't give the same result but I can't find out why.
    EDIT: I just got it if we multiply by (z-zo)^n we would actually get bn and not b1

  • @stayawayfrommrrogers
    @stayawayfrommrrogers 7 лет назад

    5:19
    When z^2 - 1 is factored, wouldn't that add a second (z - 1 ) term into the denominator?

  • @TeslaArabic
    @TeslaArabic 6 лет назад +1

    Thank you

  • @madhvisaiya5164
    @madhvisaiya5164 6 лет назад

    I want to make similar videos. How do you make them. What app?? Or tricks?

  • @jayjayf9699
    @jayjayf9699 4 года назад

    Why are we only finding b1 using technique 3 , what about the other bn values for the residue ?

    • @mogustew
      @mogustew 3 года назад

      Only the coefficient b_1 is called the residue.

  • @sureshkaruppasamy6257
    @sureshkaruppasamy6257 3 года назад

    Please help us to find poles and residue of 1/sin²z

  • @faiyazmahir5210
    @faiyazmahir5210 4 года назад

    Can I use rule three for every residue function?

  • @youssefbenhachem993
    @youssefbenhachem993 6 лет назад +1

    Amazing

  • @madalinam7137
    @madalinam7137 3 года назад

    Hi! Thanks for the nice video!
    I have a question, for the case of finding the residue for a pole of higher than 1 order, let's take as an example a pole of 2nd order. Wouldn't it give the same result and also be simpler if the residue would be calculated as lim z-> z0 { (z-z0)^2 * F(z)} instead of doing so many derivatives?
    it means that it would apply to a pole of any order n>=1 as follows:
    R[z0]= lim z-> z0 { (z-z0)^n * F(z)} with n = the order of the pole.
    What is the difference?
    Thanks!

    • @mbrusyda9437
      @mbrusyda9437 3 года назад

      No, plugging z0 to the series gives b_n not the residue b_1

  • @arbimalngiang7349
    @arbimalngiang7349 5 лет назад

    Sir can u provide video to find resume(sin1/z-1,1) plz sir

  • @lautaro450
    @lautaro450 7 лет назад +1

    This is so useful.. Thank you! you really help me. I'm student of physics so.. If you need some help in whatever you want.. just send me a message :).

    • @FacultyofKhan
      @FacultyofKhan  7 лет назад

      Thank you for the feedback and the offer! I don't need help right now but if I do, I'll be sure to make an announcement!

  • @joy4mkol
    @joy4mkol 2 года назад

    How about residue of (z-Sin z)/z?

  • @joliverkozlowski
    @joliverkozlowski 4 года назад

    Valeu! Thanks!!

  • @tanujabysani2663
    @tanujabysani2663 2 года назад

    How to solve fourier series and transforms

  • @allenfernando4619
    @allenfernando4619 4 года назад

    Hi, how is the cosine of z continuous and holomorphic at i ? Can someone explain.

    • @MrBorderlands123
      @MrBorderlands123 4 года назад

      Use the Cauchy-Riemann equations to show that cos(z) is an analytic function.

  • @sunny1441
    @sunny1441 4 года назад

    I need to know... what is Residue!?? I know different methods to find residue. But I don't know what is Residue 😖😖😣😣😞🌮 help me out

  • @sakshigupta4293
    @sakshigupta4293 6 лет назад

    How to find residues of trigonometric functions

  • @adityabharadwaj4114
    @adityabharadwaj4114 Год назад

    cos(i) = cosh(1)

  • @secretluver
    @secretluver 4 года назад

    I am but a simple pole, tending to my residues

  • @d74mu
    @d74mu 4 года назад

    Damn you're cool bro

  • @nickcooley2857
    @nickcooley2857 7 лет назад +1

    i love you

  • @StarShootex
    @StarShootex 5 лет назад

    Am I just supposed to know that cos(z) is holomorphic at z = i?

    • @anastasioskontaxoglou7444
      @anastasioskontaxoglou7444 5 лет назад

      Holomorphic means it only has an analytic part, that means every bi in the laurent series is 0 which is true for cosz. No poles=holomorphic.

    • @gokuvegeta9500
      @gokuvegeta9500 3 года назад

      @@anastasioskontaxoglou7444
      Damn thanks