Can you find area of the Purple Square? | (Triangle) |

Поделиться
HTML-код
  • Опубликовано: 3 янв 2025

Комментарии •

  • @aranyasaha8418
    @aranyasaha8418 2 месяца назад +3

    I love it❤

    • @PreMath
      @PreMath  2 месяца назад

      Glad to hear that!
      Thanks for the feedback ❤️

  • @thewolfdoctor761
    @thewolfdoctor761 2 месяца назад +12

    Let x = side of square. Once we determine the height of ABC to be 12, then we know that CP = 12-x. ABC is similar to CDF. So there is the ratio 14/x = 12/(12-x). Solve for x and get 6.46. So x squared is 41.75.

  • @jimlocke9320
    @jimlocke9320 2 месяца назад +1

    Alternative to Heron's formula: As done later in the video, drop a perpendicular from C to AB and label the intersection as point E. Let CE have length h and AE have length b, then BE has length 14 - b. For ΔACE, b² + h² = (15)² = 225. For ΔBCE, h² + (14 - b)² = (13)² = 169. Expanding, h² + 196 - 28b + b² = 169, Replace b² + h² with 225: 225 + 196 - 28b = 169. Solve for b and find b = 9. Substitute b = 9 into b² + h² = 225 and find h = 12 or CE = 12. Proceed from 5:05 in the video.
    While k is a perfectly valid designation for a variable, many of us, especially electrical engineers, associate it with 1000, so 12k looks like 12,000. Using a different letter would avoid this confusion.
    However, we really don't need variable k. Let the sides of the square have length s. ΔDFC and ΔABC are similar. Corresponding sides are in the same ratio and also in the same ratio as corresponding heights. Sides DF and AB are corresponding and heights CP and CE also corresponding, so DF/AB = CP/CE, s/14 = (12 - s)/12, 12s = (14)(12 - s), 12s = 168 - 14s, 26s = 168, s = 84/13. The square's area = s² = (84/13)² = (7056)/(169), as PreMath also found.

    • @PreMath
      @PreMath  2 месяца назад

      Thanks for the feedback ❤️

  • @egillandersson1780
    @egillandersson1780 2 месяца назад +1

    Oh ! The famous Brahmagupta's triangle ! Nice video !

  • @bakrantz
    @bakrantz 2 месяца назад +2

    Use Heron's formula to solve for area of triangle ABC. Determine height of triangle ABC, which equals 12. Show by angle-angle similarity that triangle CDF is similar to triangle ABC. Make a proportion of height over base: 12/14 = (12-x)/x, which when solved for x is 84/13. x is the side length of the square, so x^2 = 84^2/13^2 = 7056/169

  • @MegaSuperEnrique
    @MegaSuperEnrique 2 месяца назад

    Equation for AC y=12x/9, convert to x1=9y/12, equation for BC y=(-12x+168)/5 convert to x2=-5y/12 + 14. Height of square = y, width of square =x2-x1, set equal, solve for y. Area =y²

  • @johnbrennan3372
    @johnbrennan3372 2 месяца назад

    If you let side of square = x then using similar triangles CPF and CEB knowing that CP=12-x you get PF= (60-5x)/12. Then using similar triangles CDP and CAE you get DP=(36-3x)/4. Adding DP and PF and putting equal to x you get x=84/13 etc.

  • @jamestalbott4499
    @jamestalbott4499 2 месяца назад +1

    Thank you!

    • @PreMath
      @PreMath  2 месяца назад

      You're welcome! Glad you found it helpful. ❤️
      Thanks for the feedback ❤️

  • @marioalb9726
    @marioalb9726 2 месяца назад +1

    We already know that 13-14-15 is a special triangle that can be divided in two Pitágorean triplet right triangles 5-12-13 and 9-12-15
    Therefore, height of triangle is h=12 cm
    Similarity of triangles:
    s / (h-s) = b / h
    h.s = b (h-s)
    12.s = 14 (12-s) = 168 - 14s
    26 s = 168 --> s = 6,4615cm
    s² = 41,75 cm² ( Solved √ )

    • @PrithwirajSen-nj6qq
      @PrithwirajSen-nj6qq 2 месяца назад +1

      The rt 🔺 s are (5, 12,13) and (9,12,15)

    • @marioalb9726
      @marioalb9726 2 месяца назад +2

      ​@@PrithwirajSen-nj6qq
      Exactly

    • @PrithwirajSen-nj6qq
      @PrithwirajSen-nj6qq 2 месяца назад +1

      @@marioalb9726 yes you have corrected .Thanks. Request to see my sol.

    • @marioalb9726
      @marioalb9726 2 месяца назад +1

      ​​​​​​​​​​​​​@@PrithwirajSen-nj6qq
      I wrote the following just to understand your solution:
      A₁= s²
      A₂= ½bh = ½(14-s)s = 7s-½s²
      A₃= ½bh = ½s(12-s) = 6s-½s²
      A₁+A₂+A₃= ½bh= ½14*12= 84
      s² + (7s-½s²) + (6s-½s²) = 84
      s² + 13s - s² = 84
      13s = 84 ---> s=6,4615cm
      s² = 41,75 cm² ( Solved √ )
      !!! Very nice solution !!!

    • @PrithwirajSen-nj6qq
      @PrithwirajSen-nj6qq 2 месяца назад

      @@marioalb9726 O K.
      Thanks

  • @shadrana1
    @shadrana1 2 месяца назад

    At 4:41,
    Let the purple square be DFGH,
    All lengths are measured in units.
    DF=FG=GH=GD=x with EB=y and AE= 14-y. CB=13,BA=14 and AC=15.
    By Pythagoras,
    CE^2=EB^2+CE^2
    CE^2=CB^2-EB^2
    CE^2= 13^2-y^2=169-y^2...........................(1)
    AC^2=AE^2+CE^2
    CE^2=AC^2-AE^2 =15^2-(14-y)^2=225-196+28y-y^2=29+28y-y^2......................(2)
    From (1) and (2),
    169-y^2=29+28y-y^2
    28y=140
    y=5 units.
    CE^2=CB^2-y^2
    =13^2-5^2=(13+5)(13-5)=18*8=144
    CE=12 units,PE=x units and CP=12-x units.
    Consider similar triangles CDF and CAB,
    CP/DF=CE/AB
    (12-x)/x= 12/14 =6/7
    7(12-x)=6x
    84-7x=6x
    13x=84 x= 84/13 units
    Area of pink square=x^2= (84/13)^2= 7056/169 =41.75 square units approximately.
    There are many ways to skin this particular cat professor.
    Thanks for the puzzle.

  • @marcgriselhubert3915
    @marcgriselhubert3915 2 месяца назад

    We use an orthonormal center A and first axis (AB). The equation of the circle center A and radius 15 is x^2 + y^2 -225 = 0 and the equation of the circle center B and radius 13 is (x -14)^2 + y^2 -169 = 0 or x^2 + y^2 -28.x + 27 = 0. At the intersection we have -28.x +27 = -225 and that gives x = 9, then y^2 = 225 -9^2 = 144, and y = 12. So we now have point C: C(9; 12).
    The equation of (AC) is (x).(12) - (y).(9) = 0 or y = (4/3).x. Then VectorBC(-5; 12) and the equation of (BC) is (x -14).(12) - (y).(-5) = 0 or 12.x +5.y -168 = 0
    Point D(a; (4/3).a). Point F is on (BC) and has the same ordinate (4/3).a, so its abscissa x verifies 12.x = -5.(4/3).a +168, so x = (-5/9).a +14
    and then we have F((-5/9).a +14; (4/3).a). Now DF = (-5/9).a +14 -a = (-14/9).a + 14, and this distance is also the ordinate of D: (4/3).a
    So we have (-14/9).a + 14 = (4/3).a and that gives a = 63/13, and (4/3).a = 84/13 which is the side length of the square.
    Finally the area of the square is (84/13)^2 = 7056/169.

  • @prossvay8744
    @prossvay8744 2 месяца назад +3

    S=(13+14+15)/2=16
    Area of the triangle ABC=√21(21-13)(21-14)(21-15)=84
    Draw CE is attitude
    1/2(CE)(14)=84
    CE=168/14=12
    Let DF=x
    ∆CDF~∆CAB
    x/14=(12-x)/12
    So x=84/13
    So Purple Square Area=(84/13)^2=7056/169 square units=41.75 square units.❤❤❤

  • @alexundre8745
    @alexundre8745 2 месяца назад +2

    Good Morning Teacher
    Forte Abraço do Brasil
    Deus lhe Abençoe

    • @PreMath
      @PreMath  2 месяца назад

      Obrigada querido❤️
      Amor e orações dos EUA! 😀

    • @alexundre8745
      @alexundre8745 2 месяца назад

      @@PreMath Muitíssimo obrigado
      Deus abençoe o Sr pelas vossas aulas

  • @MrPaulc222
    @MrPaulc222 2 месяца назад

    Square's sides are a.
    Triangle's area is sqrt((21)(6)(7)(8)) = sqrt(7056) = 84.
    Triangle height is 12 due to 168/14.
    Therefore two right triangles of 5, 12, 13 and 9, 12, 15.
    5/12=(5-(5/14)a)/a
    5a=12(5-(5/14)a)
    5a=(60-(30/7)a
    a=(12-(30/35)a
    a+(6/7)a=12
    7a+6a=84
    13a=84
    a=84/13
    a^2=7056/169

  • @sergioaiex3966
    @sergioaiex3966 2 месяца назад +1

    Solution: First calculate the area using Heron's Formula. Knowing the area and the value of the base, calculate the total height. Apply the Pythagorean Theorem, calculate the two measurements of the base which are 9 and 5, from left to right. After that, by similarity of triangles (proportion) calculate the constants of proportion of the triangles. It will be 12/5 on one side and 12/9 on the other side of the base. We arrive at the value of 14k for the side of the square. Knowing that the total height is 26k (14k + 12k) and that the height is 12, I calculate the value of k = 6/13. Finally I calculate the value of the side of the square (14k = 14 × 6/13 = 84/13) and then the Area of ​​the Square = (84/13)² = 41.751 units of area.

  • @devondevon4366
    @devondevon4366 2 месяца назад +1

    41.75
    Drop a perpendicular line from the vertex to form two right triangle
    9-12-15 (3-4-5 triplet scaled up by 2) and a 5-12- 13 (Pythagorean triplets)
    Let's label the length of the square 'x'
    Notice that the top triangle is similar to the largest triangle in terms of
    x, its height is 12/14 x, since in the 13-14-15 largest triangle , the height is 12
    Hence, the height of the triangle in terms of x = x + 12/14x = 26/14 x
    Hence, 26/ 14 x= 12
    x = 14/26 * 12
    x = 6.4615 4
    x^2 = 41.75147 Answer

    • @PreMath
      @PreMath  2 месяца назад

      Excellent!
      Thanks for sharing ❤️

  • @erwinkurniadi1850
    @erwinkurniadi1850 2 месяца назад

    CE = 12, DF = Side length
    AB/CE = DF/(12-DF)
    14/12 = DF/(12-DF)
    DF = 168/26
    Side length = DF

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq 2 месяца назад +3

    A method without Heron's formula
    1) Let area of square is a ^2
    2) sum of area of the two triangles beside the square on base of14 units =1/2*(14-a) *a sq units
    =(7a - a^2/2) sq units
    3)
    I) Now Pythagorean triplet
    says when we draw height on 14 unit base
    One rt angle will be (9,12,15) ref [3*(3,4,5)]
    II) Then the we see 13^2 =12^2 +5^2
    Hence the other rt triangle will be (5,12,13)
    III) Then height of the big triangle on base of 14 units will be 12 units
    if) Height of triangle above the square is (12-a) units
    v) Area of the triangle above the square =1/2*a*(12-a)sq units
    = (6a -a^2/2)sq units
    4)Then
    a^2 + 7a - a^2/2 +6a -a^2/2=1/2*12*14
    a=84/13 units
    5) a^2=(84/13)^2=41.75 sq units (approx)

  • @sergeyvinns931
    @sergeyvinns931 2 месяца назад +1

    RUSSIA! Провёл из угла АВС биссектрису к стороне АС, которая яволяется и высотой BD.Площадь треугольника АВС нашёл по формуле Герона Александрийского, она равна 84; далее нашёл высоту треугольника по основанию 14, h=12; после этого из подобия треугольника с основанием х и треугольника с основанием 14, составил пропорцию, 12/14=(12-а)/а, откуда 26а=168; а=6,461538461...; площадь пурпурного квадрата равна 41,7514792898... округлять не буду.

  • @MemieNisa
    @MemieNisa 2 месяца назад +1

    Wait...I just took AST POSN exam and it's the same question 💀👍ty for the solution

  • @unknownidentity2846
    @unknownidentity2846 2 месяца назад +4

    Let's find the area:
    .
    ..
    ...
    ....
    .....
    First of all we calculate the area of the triangle ABC according to the formula of Heron:
    s = (AB + AC + BC)/2 = (14 + 15 + 13)/2 = 42/2 = 21
    A = √[s*(s − AB)*(s − AC)*(s − BC)] = √[21*(21 − 13)*(21 − 14)*(21 − 15)] = √(3*7*2³*7*2*3) = 3*7*2² = 84
    May E and G be the lower left and the lower right corner of the square, respectively. Now we add H on AB such that CH is the height of the triangle ABC according to its base AB:
    A = (1/2)*AB*h(AB) = (1/2)*AB*CH ⇒ CH = 2*A/AB = 2*84/14 = 12
    The triangles ACH and BCH are right triangles, so we can apply the Pythagorean theorem:
    AC² = AH² + CH² ⇒ AH² = AC² − CH² = 15² − 12² = 225 − 144 = 81 ⇒ AH = √81 = 9
    BC² = BH² + CH² ⇒ BH² = BC² − CH² = 13² − 12² = 169 − 144 = 25 ⇒ BH = √25 = 5
    May s be the side length of the square. Since the triangles BFG and BCH are similar and the triangles ADE and ACH are similar as well, we can conclude:
    BG/BH = FG/CH
    BG/5 = s/12
    ⇒ BG = 5*s/12
    AE/AH = DE/CH
    AE/9 = s/12
    ⇒ AE = 9*s/12
    AB = AE + EG + BG
    14 = 9*s/12 + s + 5*s/12 = s*(9/12 + 12/12 + 5/12) = 26*s/12 = 13*s/6
    ⇒ s = 6*14/13 = 84/13
    Now we are able to calculate the area of the purple square:
    A(purple) = s² = (84/13)² = 7056/169 ≈ 41.75
    Best regards from Germany

    • @PreMath
      @PreMath  2 месяца назад

      Excellent!
      Thanks for sharing ❤️

  • @DB-lg5sq
    @DB-lg5sq 2 месяца назад

    شكرا لكم على المجهودات
    يمكن استعمال
    cosB =[14^2 +13^2 -15^2]/2×13×14
    =5/13
    sinB=12/13
    CF=13×x/14
    FB=13-CF
    sinB =x/(13-CF)
    12/13=x/(13-13x/14)
    x=84/13

  • @SGuerra
    @SGuerra 2 месяца назад +1

    Muito boa a questão. Eu a resolvi por outro método, mas gostei do seu. Parabéns pela escolha. Brasil - Outubro de 2024.

    • @PreMath
      @PreMath  2 месяца назад +1

      Excelente!
      Fico feliz em ouvir isso!
      Obrigado pelo feedback ❤️
      Amor e orações dos EUA! 😀

  • @devondevon4366
    @devondevon4366 2 месяца назад +1

    41.75

    • @PreMath
      @PreMath  2 месяца назад

      Excellent!
      Thanks for sharing ❤️

  • @AllmondISP
    @AllmondISP 2 месяца назад

    All you really need to solve this is finding the area and height of the big triangle. Nothing else, really.

  • @imetroangola17
    @imetroangola17 2 месяца назад

    *Solution:*
    The triangle ABC ~ DCF. Now, Consider DF=x. Hence,
    CD/15 = x/14 → *CD =15x/14.* Hence,
    AD= AC - CD→ *AD =15 - 15x/14*
    Law of cosines in ∆ABC with respect to angle A:
    13²=15² + 14² - 2×15×14 cos A
    169= 421 - 420 cos A
    Cos A = 252/420 = 3/5. Hence,
    sin² A= 1 - cos² A
    sin² A = 1 - 9/25= 16/25
    sin A = 4/5.On the other hand,
    sin A = x/AD →AD = 5x/4 and how
    AD=15 - 15x/14, we have:
    15 - 15x/14 = 5x/4 ÷(5)
    3 - 3x/14 = x/4
    x/4 + 3x/14 = 3 ×(28)
    7x + 6x = 84 → x= 84/13, Therefore, the area of the square is:
    *(84/13)² square units*
    or
    *≈41.75 square units*

  • @jpl569
    @jpl569 2 месяца назад +1

    I think that this problem is an application of the « Pythagorean triangles », i. e. the right triangles whose sides are all integers. If we note (a, b, c) the triplet of the sides in decreasing order, the (5, 4, 3) triangle is very well known (and of course its multiples : (10, 8, 6) and (15, 12, 9) and etc.
    An other well-known Pythagorean triangle is (13, 12, 5) and its multiples…
    And an interesting but easy theorem says that there are infinitely many Pythagorean triangles, and that any integer belongs to at least one of them.
    Back to the problem, considering the (15, 12, 9) and (13, 12, 5) triangles, we can « glue » them side by side using the side 12, and rebuild the (15, 14, 13) triangle (which is NOT a Pythagorean triangle).
    Knowing the vertical height 12 in the (15, 14, 13) triangle, we easily obtain the result x = 84/13.
    Thank you for your videos ! 😊

  • @michaeldoerr5810
    @michaeldoerr5810 2 месяца назад

    The area is 7059/169 units square. Looks like this is a problem that I need to practice over and over again!!!

  • @phungpham1725
    @phungpham1725 2 месяца назад

    1/ By Heron theorem, area of the triangle ABC= 84
    --> CE = h= 12
    2/ Label a as side of the square and h’ =CP
    We have: h’= 12-a
    Area of the triangle ABC= Area of the triangle DCF+ Area of the trapezoid ADFB
    -> (12-a).a/2 + (a+14) x a/2=84
    -> a/2.(12-a+a+14)=84
    -> a=84/13
    Area of the sqare = sq (84/13) = 41.75 sq units😅😅😅

  • @wackojacko3962
    @wackojacko3962 2 месяца назад

    Veni,vidi,vici ...spliced it all together to solve thanks too Heron's Formula and Similar Triangles. 🙂

  • @Birol731
    @Birol731 2 месяца назад

    My way of solution ▶
    For the given triangle ΔABC, the values are:
    [AB]= 14
    [BC]= 13
    [CA]= 15
    By drawing the height of the triangle, we have two triangles, the triangle on the left ΔADC and the trinagle on the right ΔDBC.
    D ∈ [AB] and [AD] ⊥ [DC]
    For the triangle ΔADC, we can write:
    [AD]= x
    [DC]= h
    [CA]= 15
    By applying the Pythagorean theorem, we get:
    [AD]²+[DC]²= [CA]²
    x²+h²= 15²
    x²+h²= 225...........................Eq-1
    For the triangle ΔDBC, we can write:
    [DB]= 14-x
    [CD]= h
    [BC]= 13
    By applying the Pythagorean theorem, we get:
    [DB]²+[CD]²= [BC]²
    (14-x)²+h²= 13²
    196-28x+x²+h²= 169............Eq-2
    By subtracting equation two from equation one, we get:
    x²+h²= 225
    -196+28x-x²-h²= -169

    28x-196= 56
    28x= 252
    x= 9

    [AD]= 9
    h= 12
    [CD]= 12
    [DB]= 5
    b) Let's find the value of ∠CAD
    tan(α)= [DC]/[AD]
    tan(α)= 12/9
    tan(α)= 4/3
    In the same way the value of ∠CAD
    tan(β)= [CD]/[DB]
    tan(β)= 12/5
    c) Let's consider the small triangle on the left: ΔAEF
    E ∈ [AD]
    F ∈ [AC]
    in this triangle: ∠FAE = α
    tan(α)= a/[AE ]
    4/3= a/[AE ]

    [AE]= 3a/4
    d) Let's consider the small triangle on the right: ΔGBH
    G ∈ [DB]
    H ∈ [BC]
    in this triangle: ∠GBH = β
    tan(β)= a/[GB]
    12/5= a/[GB ]

    [GB]= 5a/12
    d) We know that:
    [AE]+[EG]+[GB]= 14
    [AE]= 3a/4
    [GB]= 5a/12
    [EG]= a

    3a/4 + a+ 5a/12 = 14
    9a+12a+5a= 14*12
    26a= 168
    a= 84/13 length units

    Apurple= a²
    Apurple= (84/13)²
    Apurple= 7056/169 square units

  • @giuseppemalaguti435
    @giuseppemalaguti435 2 месяца назад

    CAB=α..cosα/2=√(21*8/15*14)=√(4/5)..CBA=β..cosβ/2=√(21*6/13*14)=√(9/13)..14=l/tgα+l+l/tgβ=l(ctgα+1+ctgβ)=l(3/4+1+5/12)=l*26/12..l=12*14/26=84/13.mah..!!?

    • @PreMath
      @PreMath  2 месяца назад

      Excellent!
      Thanks for sharing ❤️

  • @xaviersoenen4460
    @xaviersoenen4460 2 месяца назад

    je n'ai pas trouvé la solution mais j'ai fait une découverte.
    Cos(A)=(15²+14²-13²)/(2x14x15)=(225+14+13)/14x30=252/420=3/5
    Sin²(A)=1- 3²/5²=(25-9)/25=6/25,sin(A)= 4/5 (triangle rectangle(3,4,5)semblable au triangle rectangle(9,12,15))
    sin(A)/13=sin(B)/15=sin(C)/14, Sin(B)=12/13 et sin(C)=56/65
    cos²(B)=1-(12/13)²=(13²-12²)/13²=(13+12)/13²=25/13²=5²/13², cos(B)=5/13 (triangle rectangle 5,12,13)
    cos²(C)=1-(56/65)²=(65²-56²)/65²=(9x121)/65²=(3²x11²)/65²=33²/65²,cos(C)= 33/65 encore 1 triangle rectangle avec uniquement des carrés parfaits: 33², 56² et 65²
    On a le sinus de l'angle en A donc je peux trouver la hauteur = 15 sin(A)=5x4/5=12
    La surface du triangle =15x14 sin(A)/2=(5x14x4/5)/2=84
    Le triangle CDF est semblable au triangle ABC

  • @laxmigupta8846
    @laxmigupta8846 2 месяца назад +2

    Hii sir😊😊

    • @ManuelLopez-vg6sp
      @ManuelLopez-vg6sp 2 месяца назад

      😂😂😂
      I tapped on translate on hi sir with the 2 smiling emojies, and I got this is a secret

    • @PreMath
      @PreMath  2 месяца назад

      Hello dear❤️
      Thanks ❤️

  • @vikramsinghshekhawat7680
    @vikramsinghshekhawat7680 2 месяца назад

    Last part is unnecessary. Could have been solved easily by adding areas of three triangle and square and equating it to the area of the given triangle.

  • @ajaykannojiay4829
    @ajaykannojiay4829 2 месяца назад

    61

  • @himadrikhanra7463
    @himadrikhanra7463 2 месяца назад

    35 square unit ?

  • @ajaykannojiay4829
    @ajaykannojiay4829 2 месяца назад

    12&5&9 is rong 5.133333&8.86666666&11.943571 your az nswar & math is ronge