Can you calculate the Radius of the inscribed circle? | (Cyclic) |

Поделиться
HTML-код
  • Опубликовано: 20 янв 2025

Комментарии • 38

  • @johnbrennan3372
    @johnbrennan3372 3 месяца назад +3

    Very interesting formula and solution to the problem. Thank you.

    • @PreMath
      @PreMath  3 месяца назад

      Glad you liked it
      You are very welcome!
      Thanks for the feedback ❤️

  • @marcelowanderleycorreia8876
    @marcelowanderleycorreia8876 3 месяца назад

    Very interesting formula! Keep bringing us good quality math questions Sir! 👌👍

  • @alexundre8745
    @alexundre8745 3 месяца назад

    Good Morning Master
    Forte Abraço do Brasil 🇧🇷

  • @marcgriselhubert3915
    @marcgriselhubert3915 3 месяца назад +2

    Very good.

    • @PreMath
      @PreMath  3 месяца назад

      Excellent!
      Thanks for the feedback ❤️

  • @jamestalbott4499
    @jamestalbott4499 3 месяца назад +3

    Thank you for introducing me Brahmagupta's formula! 📐

    • @PreMath
      @PreMath  3 месяца назад

      You are very welcome!
      Thanks for the feedback ❤️

  • @imetroangola17
    @imetroangola17 3 месяца назад

    *Sugestão professor para o seu próximo vídeo:*
    Seja ABCD um quadrilátero qualquer. Sejam AB=2, BC=3, CD=8 e AD=5 e que os ângulos B + D = 120°. Qual a área do quadrilátero ABCD?

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq 3 месяца назад +1

    Radius =
    (2*area of the quadrilatera)/ perimeter of the Quadrilateral
    = 2*6√5/16=3√5/4 unit

    • @PreMath
      @PreMath  3 месяца назад

      Excellent!
      Thanks for sharing ❤️

  • @Okkk517
    @Okkk517 3 месяца назад +1

    An alternative method to solve the problem without Brahmagoutpta formula is to use the complementary of the opposite angle in cyclic quadrilaterals together with the cosine law applied twice. We arrive to the same answer (3/4)*Sqrt(5). The details can be posted if you are interested.

  • @zdrastvutye
    @zdrastvutye 2 месяца назад

    in germany this could be called "a system with one degree of liberty". but, i got a different result for ri. however, see the graphics of the following calculation. this will not always give an accurate result if l1,l2,l3 or l4 have been changed:
    10 print "premath-can you calculate the radius of the inscribed circle":dim x(3),y(3)
    20 xu0=0:yu0=0:l1=2:l2=3:l3=6:l4=5:sw2=sqr(l1^2+l2^2+l3^2+l4^2)/180:sw1=sw2/9
    30 x(3)=l4:y(3)=0:goto 200
    40 ym1=sqr(l1^2-xm1^2):y2=sqr(abs(l3^2-(x2-l4)^2))
    50 dgu1=(x2-xm1)^2/l4^2:dgu2=(y2-ym1)^2/l4^2:dgu3=l2^2/l4^2
    60 dg=dgu1+dgu2-dgu3 :return
    70 x2=l4-l3+sw1:gosub 40
    80 dg1=dg:x21=x2:x2=x2+sw2:x22=x2:gosub 40:if xm1>l1 then stop
    90 if dg1*dg>0 then 80
    100 x2=(x21+x22)/2:gosub 40:if dg1*dg>0 then x21=x2 else x22=x2
    110 if abs(dg)>1E-8 then 100:rem den mittelpunkt des aussenkreises berechnen ***
    120 xu1=xm1:yu1=ym1:xu2=x2:yu2=y2:xu3=l4:yu3=0:a11=2*(xu3-xu1):a12=2*(yu3-yu1)
    a13=xu3^2+yu3^2-xu1^2-yu1^2:a21=2*(xu2-xu1):a22=2*(xu2-yu1):a23=xu2^2+yu2^2-xu1^2-yu1^2
    140 ngl1=a12*a21:ngl2=a22*a11
    150 ngl=ngl1-ngl2:if ngl=0 then print "keine loesung":end
    160 zx1=a23*a12:zx2=a13*a22:zx=zx1-zx2
    170 zy1=a13*a21:zy2=a23*a11:zy=zy1-zy2
    180 xl=zx/ngl:yl=zy/ngl:xma=xl:yma=yl:rua=sqr((xu1-xma)^2+(yu1-yma)^2):rem print "x=";xl;"y=";yl
    190 return
    200 xm1=-l1+sw2:gosub 210:goto 230
    210 gosub 70:dfu1=(xma-xu2)^2/l4^2:dfu2=(yma-yu2)^2/l4^2:dfu3=rua^2/l4^2
    220 df=dfu1+dfu2-dfu3:print df:return
    230 df1=df:xm11=xm1:xm1=xm1+sw1:xm12=xm1:if xm1>l1 then stop
    240 gosub 210:if df1*df>0 then 230
    250 xm1=(xm11+xm12)/2:gosub 210:if df1*df>0 then xm11=xm1 else xm12=xm1
    260 if abs(df)>1E-8 then 250:rem den radius des innenkreises berechnen ***
    270 x(0)=0:y(0)=0:x(1)=xm1:y(1)=ym1:x(2)=x2:y(2)=y2:x(3)=l4:y(3)=0
    280 xu4=l4:yu4=0:goto 370
    290 xg1=xu1:yg1=yu1:xg2=xu0:yg2=yu0:xpu=xmi:ypu=ymi:gosub 300:goto 320
    300 dx=xg2-xg1:dy=yg2-yg1:zx=dx*(xpu-xg1):zy=dy*(ypu-yg1):ku=(zx+zy)/(dx^2+dy^2)
    310 dxk=ku*dx:dyk=ku*dy:xlo=xg1+dxk:ylo=yg1+dyk:ru=sqr((xlo-xpu)^2+(ylo-ypu)^2):return
    320 ru1=ru:xg1=xu2:yg1=yu2:xg2=xu3:yg2=yu3:gosub 300:dg=(ru-ru1)/l3:return
    330 xmi=sw1:gosub 290
    340 dg1=dg:xmi1=xmi:xmi=xmi+sw1:xmi2=xmi:gosub 290:if dg1*dg>0 then 340
    350 xmi=(xmi1+xmi2)/2:gosub 290:if dg1*dg>0 then xmi1=xmi else xmi2=xmi
    360 if abs(dg)>1E-10 then 350 else return
    370 ymi=sw1:goto 390
    380 gosub 330:xg1=xu3:yg1=yu3:xg2=xu0:yg2=yu0:gosub 300:df=(ru-ru1)/l4:return
    390 gosub 380
    400 ymi1=ymi:df1=df:ymi=ymi+sw1:ymi2=ymi:gosub 380:if df1*df>0 then 400
    410 ymi=(ymi1+ymi2)/2:gosub 380:if df1*df>0 then ymi1=ymi else ymi2=ymi
    420 if abs(df)>1E-10 then 410 else rui=ru:print "rui=";rui
    430 xmin=(xu1+xu2+xu3)/3:ymin=(yu1+yu2+yu3)/3:xmax=xmin:ymax=ymin
    440 for a=0 to 3:if xmin>x(a) then xmin=x(a)
    450 if xmaxy(a) then ymin=y(a)
    470 if ymax

  • @michaeldoerr5810
    @michaeldoerr5810 3 месяца назад +1

    The radius is 3/4(sqrt(5)). By golly I really appreciated that refresher in cyclic quadrilaterals!!!

    • @PreMath
      @PreMath  3 месяца назад

      Excellent!
      Glad to hear that!
      Thanks for the feedback ❤️

  • @giuseppemalaguti435
    @giuseppemalaguti435 3 месяца назад +2

    A=(somma di 4 triangoli)=5r/2+6r/2+3r/2+2r/2=8r...A=√(p-3)(p-2)(p-5)(p-6)=√180(formula di Braham..con p=2p/2=8)..r=√180/8=6√5/8=3√5/4

    • @PreMath
      @PreMath  3 месяца назад

      Excellent!
      Thanks for sharing ❤️

  • @SGuerra
    @SGuerra 3 месяца назад

    A questão é muito bonita. É possível resolvê-la utilizando outros métodos. Parabéns pela escolha.

    • @imetroangola17
      @imetroangola17 3 месяца назад

      Se tem outros métodos, fico surpreso, pois a fórmula de Brahmagupta é a que temos!

    • @PreMath
      @PreMath  3 месяца назад

      Muitas abordagens são possíveis para encontrar a solução para este problema!
      No entanto, este método é mais eficiente.
      Obrigado pelo feedback ❤️

  • @축복이-x6u
    @축복이-x6u 3 месяца назад

    asnwer=3/4 isit gmm fmm

  • @rabotaakk-nw9nm
    @rabotaakk-nw9nm 3 месяца назад

    2:15-3:08 s=(a+b+c+d)/2 ???
    4:45-9:28 A=A1+A2+A3+A4 ???
    Tangential quadrilateral :
    s=a+c=b+d; A=sr !!! 😁

  • @bobbyheffley4955
    @bobbyheffley4955 3 месяца назад

    The quadrilateral in the figure is both cyclic and tangential.

    • @jimlocke9320
      @jimlocke9320 3 месяца назад

      That's an interesting point! To be complete, we would need to prove that the quadrilateral is cyclic and that a circle can also be inscribed in it, in other words, it is a tangential quadrilateral as well. For the quadrilateral to be cyclic, we need to prove that a quadrilateral can be drawn with the given side lengths and

  • @prossvay8744
    @prossvay8744 3 месяца назад +1

    r=3√5/4 units.❤

    • @PreMath
      @PreMath  3 месяца назад

      Excellent!
      Thanks for sharing ❤️

  • @Birol731
    @Birol731 3 месяца назад

    My way of solution ▶
    Here in this circle, we have four Deltoids.
    Let's consider the triangle ΔBAD and ΔDCB, also the angles:
    ∠BAD= θ
    ∠DCB= 180°- θ
    By applying the cosine theorem for the triangle ΔBAD we get:
    [BD]²= [BA]²+[AD]²-2*[BA]*[AD]*cos(θ)
    [BA]= 2
    [AD]= 5

    [BD]²= 2²+5²-2*2*5*cos(θ)
    [BD]²= 4+25-20cos(θ)
    [BD]²= 29 - 20cos(θ)............Eq-1
    By applying the cosine theorem for the triangle ΔDCB we get:
    [BD]²= [BC]²+[CD]²-2*[BC]*[CD]*cos(180°-θ)
    [BC]= 3
    [CD]= 6

    [BD]²= 3²+6²-2*3*6*cos(180°-θ)
    [BD]²= 9+36-36cos(180°-θ)
    cos(180°-θ)= cos(180°)*cos(θ) - sin(180°)*sin(θ)
    cos(180°-θ)= -cos(θ)

    [BD]²= 45 + 36cos(θ)............Eq-2

    Equation-1 and equation-2 must be equal to each other, so:
    29 - 20cos(θ) = 45 + 36cos(θ).
    29-45= 20cos(θ)+ 36cos(θ)
    56cos(θ)= -16
    cos(θ)= -16/56
    cos(θ)= -2/7

    θ= 106,6015°
    180°-θ = 73,3985°
    b) Let's consider the Deltoids: D(EAFO), D(FDGO), D(GCFO), and D(FBEO)
    E ∈ [AB]
    F ∈ [AD]
    G ∈ [DC]
    H ∈ [BC]
    if [EB] = x
    [EB]=[FB]
    [FB]= x
    [EA]= 2-x
    [EA]=[AF]
    [AF]= 2-x

    [FD]= 5 - (2-x)
    [FD]= 3+x
    [FD]= [DG]
    [DG]= 3+x
    [GC]= 6-(3+x)
    [GC]= 3-x
    [GC]= [CF]
    [CF]= 3-x
    c) Let's write the equations for the Deltoid D(EAFO) and D(GCFO)
    tan(θ/2)= r/(2-x)
    tan[(180-θ)/2]= r/(3-x)

    tan(106,6015°/2)= r/(2-x)
    tan(73,3985°/2)= r/(3-x)

    1,341639= r/(2-x)
    0,7453= r/(3-x)

    r= 2,6832 - 1,3416 x

    0,7453= (2,6832 - 1,3416 x)/(3-x)
    2,2359 - 0,7453 x= 2,6832 - 1,3416x
    1,3416x - 0,7453x= 2,6832 - 2,2359
    x= 0,7501 length units ✅
    r= 2,6832 - 1,3416*0,7501
    r= 1,6768
    r≈ 1,677 length units ✅

    • @imetroangola17
      @imetroangola17 3 месяца назад

      You are implicitly using Brahmagupta's formula!However, more work!

    • @PreMath
      @PreMath  3 месяца назад

      Thanks for sharing ❤️

    • @soli9mana-soli4953
      @soli9mana-soli4953 3 месяца назад

      Once you have found cosine theta you could find sines theta and then the area of the two triangles

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 3 месяца назад

    Ok!!
    Using B. Formula Online Calculator , it gives me :
    01) Area of Quadrilateral [ABCD] (A) = 13,42 sq un
    02) 2R + 3R + 5R + 6R = 2A
    03) 16R = 2A
    04) R = 2A / 16
    05) R = A / 8
    06) R = 13,42 / 8
    07) R = 1,6775 lin un
    Therefore,
    MY FINAL ANSWER :
    Radius r equal 1,6775 Linear Units.

  • @wackojacko3962
    @wackojacko3962 3 месяца назад +1

    Thank Brahmagupta for nothin! ...🙂

    • @PreMath
      @PreMath  3 месяца назад +1

      😀
      Thanks for the feedback ❤️

  • @unknownidentity2846
    @unknownidentity2846 3 месяца назад +1

    Let's find the radius r:
    .
    ..
    ...
    ....
    .....
    By drawing lines from the corners of the quadrilateral ABCD to the center O of the inscribed circle we divide the quadrilateral into four triangles. The total sum of their areas corresponds to the area of the quadrilateral:
    A(ABCD)
    = A(ABO) + A(BCO) + A(CDO) + A(DAO)
    = (1/2)*AB*h(AB) + (1/2)*BC*h(BC) + (1/2)*CD*h(CD) + (1/2)*DA*h(DA)
    = (1/2)*AB*r + (1/2)*BC*r + (1/2)*CD*r + (1/2)*DA*r
    = (1/2)*r*(AB + BC + CD + DA)
    = (1/2)*r*P
    ⇒ r = 2*A(ABCD)/P
    P=AB+BC+CD+DA=2+3+6+5=16 is the perimeter of the quadrilateral. Since this quadrilateral does not only have an inscribed circle, but also a circumscribed one, its area can be calculated by applying the formula of Brahmagupta:
    A(ABCD)
    = √[(s − AB)(s − BC)(s − CD)(s − DA)]
    = √[(P/2 − AB)(P/2 − BC)(P/2 − CD)(P/2 − DA)]
    = √[(16/2 − 2)(16/2 − 3)(16/2 − 6)(16/2 − 5)]
    = √[(8 − 2)(8 − 3)(8 − 6)(8 − 5)]
    = √(6*5*2*3)
    = 6√5
    Now we are able to calculate the value of the radius r:
    r = 2*A(ABCD)/P = 2*6√5/16 = (3/4)√5
    Best regards from Germany

    • @PreMath
      @PreMath  3 месяца назад

      Excellent!
      Thanks for sharing ❤️

  • @12tanr70
    @12tanr70 3 месяца назад

    Why do you speak like that?

  • @sergeyvinns931
    @sergeyvinns931 3 месяца назад +1

    RUSSIA! Радиус вписанной в многоугольник равен площади днлённой на полупериметр. r=A/p; А=\/(р-6)(р-5)(р-3)(р-2)=6\/5=8r, r=6\/5/8= 3\/5/4=1,67705098311...линейных единиц.

    • @PreMath
      @PreMath  3 месяца назад

      Excellent!
      Thanks for sharing ❤️